Going With The Flow: A Graph Based Approach to Optimal Path Planning in General Flows
Dhanushka Kularatne, Subhrajit Bhattacharya, and M. Ani Hsieh
Abstract: Autonomous surface and underwater vehicles (ASVs and AUVs) used for ocean monitoring are typically deployed for long periods of time and must operate with limited energy budgets. Coupled with the increased accessibility to ocean flow data, there has been a significant interest in developing energy efficient motion plans for these vehicles that leverage the dynamics of the surrounding flow. In this paper, we present a graph search based method to plan time and energy optimal paths in static and time-varying flow fields. We also use tools from topological path planning to generate optimal paths in different homotopy classes to facilitate simultaneous exploration of the environment by multi-robot teams. The proposed strategy is validated using analytical flow models, actual ocean data, and in experiments using an indoor laboratory testbed capable of creating flows with ocean-like features. We also present an alternative approach using a Riemannian metric based approximation for the cost functions in the static flow case for computing time and energy optimal paths. The Riemannian approximation results in smoother trajectories in contrast to the graph based strategy while requiring less computational time.
Status: Accepted and to appear in Autonomous Robots. Preprint to come.