Cooperative Transport by ASVs

Differential Geometric Approach to Trajectory Planning: Cooperative Transport by a Team of Autonomous Marine Vehicles

Hadi Hajieghrary, Dhanushka Kularatne, and M. Ani Hsieh

Abstract: In this paper we addressed the cooperative transport problem for a team of autonomous surface vehicles (ASVs) towing a single buoyant load. We consider the dynamics of the constrained system and decompose the cooperative transport problem into a collection of subproblems. Each subproblem consists of an ASV and load pair where each ASV is attached to the load at the same point. Since the system states evolve on a smooth manifold, we use the tools from differential geometry to model the holonomic constraint arising from the cooperative transport problem and the non-holonomic constraints arising from the ASV dynamics. We then synthesize distributed feedback control strategies using the proposed mathematical modeling framework to enable the team transport the load on a desired trajectory. We experimentally validate the proposed strategy using a team of micro ASVs.

Status: To be presented at ACC 2018.  Preprint to come.