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Abstract— Autonomous Marine Vehicles (AMVs) have gained
interest for scientific and commercial applications, including
pipeline and algae bloom monitoring, contaminant tracking,
and ocean debris removal. The Team Orienteering Problem
(TOP) is relevant in this context as Multi-Robot Systems
(MRSs) allow for better coverage of the area of interest,
simultaneous data collection at different locations, and an
increase in the overall robustness and efficiency of the mission.
However, route planning for AMVs in dynamic ocean envi-
ronments is challenging due to the coupling of environmental
and vehicle dynamics. We propose a multi-objective formulation
that accounts for the trade-offs between visiting multiple task
locations and energy consumption by the vehicles subject to a
time budget. This work focuses on vehicles that can maintain
a constant net speed but can be adapted to vehicles with
constant thrust. Different from existing approaches, our method
is able to leverage time-varying ocean currents to improve
the energy efficiency of resulting routes. We validate our
approach experimentally by superimposing ocean flow models
with benchmark instances of the TOP.

I. INTRODUCTION

Autonomous Marine Vehicles (AMVs) are becoming in-
creasingly popular in various applications, such as oceano-
graphic research, underwater archaeology, and maritime
surveillance. However, there are several challenges involved
in the use of such vehicles, including their costs, environmen-
tal dynamics, energy consumption, and regulatory require-
ments. Moreover, environmental changes, such as weather
conditions and water currents, can significantly impact the
performance and reliability of these vehicles.

In this context, routing problems play a crucial role in
the successful deployment and operation of autonomous
vehicles. These problems involve finding the most efficient
tour to sequentially visit distinct sites, taking into account
factors such as energy consumption, time constraints, and en-
vironmental conditions. The Orienteering Problem (OP) [1]
is particularly relevant, since it allows to model more realistic
aspects such as locations associated with specific rewards
and vehicles with limited travel budgets. The OP is NP-
hard [1], since it is a generalization of the Travelling Sales-
person Problem (TSP).

In real-world scenarios, some environmental features can
greatly impact the tour, e.g., ocean and/or atmospheric cur-
rents. In practice, in the ocean environment there is a trade-
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off between the expected utility (reward) of a task and the
cost of travelling to its location.

Fig. 1: Illustration of a team of surface vehicles visiting
multiple task locations (stars) with trajectories (yellow lines)
that adapt to changing ocean currents (blue arrows) at two
timesteps (left: midway, right: final).

Therefore, in a marine environment, we are interested
in efficiency in terms of time and energy. In our previous
work [2], we proposed a multi-objective formulation to tackle
the OP in the presence of static flow fields. We focus on vehi-
cles that can maintain a constant net speed, but our method
could be extended to vehicles that output constant thrust.
In this paper, we extend the previous approach to consider
multi-robot teams and time-varying flows. An illustration
depicting an example scenario is depicted in Figure 1.

Our main contributions are:
• The formulation of a multi-objective optimization prob-

lem for a heterogeneous team operating in a known,
time-varying vector field. This formulation accounts for
the trade-offs between energy expenditure and reward
collection, subject to a mission budget.

• An evolutionary algorithm is proposed to solve this
formulation. By combining the task and path planning
problems into one problem, our method is able to deal
with the coupling between the environmental dynamics
and the costs of operating the vehicles.

• We present experimental results from both a simulated
ocean environment and nowcast data from the NOAA’s
Global Real-Time Ocean Forecast System (RTOFS) [3]
database.

II. RELATED WORK

Motion planning is crucial for autonomous mobile robots
operating in a diverse set of environments. Most existing
approaches focus on finding paths that are optimized con-
sidering the path’s length or traversal time. In practice,



these methods should also consider other important factors,
such as energy expenditure, especially when vehicles must
operate in complex environments with significant constraints
on resources and little opportunity for human intervention.

In dynamic environments like the ocean and the atmo-
sphere, the environmental forces experienced by the vehicle
are inherently coupled with its dynamics. This coupling can
make path planning harder but opens an opportunity for
the vehicle to take advantage of these forces to compute
more energy efficient paths. Different works have tackled this
problem by considering a single point-to-point path in envi-
ronments with time-invariant [4], [5] or time-varying [6]–[9]
flow fields. Path planning where forecasting uncertainties are
taken into account has also been developed by [10], [11].
Others have leveraged the global topology of the fluid flow
vector field to find energy efficient trajectories [12], [13].

However, the sequential visiting of multiple sites imposes
new challenges. The OP [1] is part of a broad class of routing
problems where the vehicle has a limited budget and must
visit various task locations, each with an associated reward.
The goal is to determine the optimal sequence of visits that
maximizes the rewards collected. Since a budget constraint
must be respected, it might be necessary to select a subset of
the locations to be visited. It has been generalized in many
different ways to consider characteristics such as motion and
exposure constraints [14], [15], correlated and time-varying
profits [16], [17], fault-tolerance [18], among others. The
task allocation problem in an ocean environment has been
explored in [19], [20], however these works do not consider
time-varying flow fields and optimize for a single objective.

In our previous work [2], we proposed a multi-objective
formulation for the OP to be applied in fluid environments.
In addition to maximizing the collected reward, the goal
was to minimize the energy expenditure by leveraging the
environmental dynamics. For Multi-Robot Systems (MRS),
determining the order and which robot will visit each location
is related to a task planning phase, and there is another step
which is to determine the paths between these tasks. The
Team Orienteering Problem (TOP) [21] is the multi-robot
variant of the classic OP formulation, where robots must
uniquely visit a disjoint set of locations. In [22], we proposed
a planning and scheduling algorithm for a TOP variant where
the collected reward at each location is related to the service
time each robot spends attending a demand.

In this paper, we consider the use of multiple, heteroge-
neous vehicles in the presence of time-varying environmental
flows. We formulate it as a multi-objective optimization
problem and use an evolutionary algorithm to solve the task
and path planning problems in a combined manner.

III. PROBLEM FORMULATION

A. Vehicle and Environment Model

We consider a 2-D representation W ∈ R2 for modeling
a marine environment. Predictive and descriptive models
of these currents have been studied and used for different
regions of the world [3], [23], [24]. Since ocean currents
impact the movement of vehicles along a given set of

trajectories, we employ a kinematic representation of the
vehicle and thus for a given point q ∈ W, at time t, the net
velocity of the vehicle Vnet is a result of the thrust vector
Vu and the ocean currents Vc given by

Vnet(q, t) = Vc(q, t) +Vu(q, t). (1)

Since vehicles use propulsion for thrust to overcome drag
forces, the energy expenditure is given by

E(Γ(t)) =

∫
t

kdV
α
u (Γ(t)) dt, (2)

where Γ(t) is the path travelled, whose time derivative is
the net velocity Vnet =

dΓ(t)
dt , kd is the drag coefficient, Vu

is the speed as a result of thrust, and the drag model α ∈
{2, 3, ...} (α = 2 for linear drag, α = 3 for quadratic drag,
and so on) [8]. Note that the energy cost here is impacted
by the environmental currents, as (1) gives the relationship
between Vnet,Vu, and Vc.

B. Unified Task and Path Planning Problem

Let N = {n1, . . . ,nN} be the set of spatially distributed
node locations with ni ∈ W and let A = {a1, . . . ,aM} be
a team of cooperative vehicles. Each location is associated
with a known positive profit ri which can be collected at the
node.

Problem 1 (Energy-efficient TOP with Time-Varying Ocean
Currents). The aims are to maximize the total rewards
collected and minimize energy expenditure, i.e.:

max

N−1∑
i=1

M∑
m=1

riyim , (3a)

min

N−1∑
i=1

N∑
j=2

M∑
m=1

xijmE(Γijm) , (3b)

where Γijm is a decision variable representing the path from
ni to nj by vehicle am. E(Γijm) is the energy given by (2).
xijm is a binary decision variable that is equal to 1 when
vehicle am’s route includes the arc (ni,nj) and 0 otherwise.
yim is a binary decision variable that gets a value of 1 when
ni is included in am’s route and 0 otherwise.

This optimization is subject to the following constraints:
N∑
j=2

M∑
m=1

x1jm =

N−1∑
i=1

M∑
m=1

xiNm = M (4a)

N−1∑
i=1

xikm =

N∑
j=2

xkjm = ykm;

∀k = 2, . . . , (N − 1) ∀m = 1, . . . ,M

(4b)

M∑
m=1

ykm ≤ 1; ∀k = 2, . . . , (N − 1) (4c)

Γijm(tijms ) = ni; Γijm(tijmg ) = nj ;

0 ≤ tijs ≤ tijg ; ∀i, j = 1, . . . , N ∀m = 1, . . . ,M
(4d)



N−1∑
i=1

N∑
j=2

xijm

∫
Γijm

1

∥Vnet(q, t)∥
dt ≤ Tmax,m

∀m = 1, . . . ,M

(4e)

2 ≤ uim ≤ N ; ∀i = 2, . . . , N ∀m = 1, . . . ,M (4f)

uim − ujm + 1 ≤ (N − 1)(1− xijm);

∀i, j = 2, . . . , N ∀m = 1, . . . ,M
(4g)

Constraint (4a) ensures the routes start and end from the
depots n1, nN , respectively. Constraint (4b) ensures the
connectivity of the routes. Constraint (4c) ensures that nodes
are visited at most once. Constraint (4d) ensures that vehicle
am’s path, Γijm, starts from ni at some start time tijms

and reaches nj at tijmg . Constraint (4e) ensures that the
vehicles adhere to the time budget Tmax,m. The variables
uim represent the relative positioning of ni in vehicle am’s
route, when selected for inclusion. Using these variables,
constraints (4f)-(4g) enforce subtour elimination, following
the Miller-Tucker-Zemlin formulation introduced in [25].

IV. METHODOLOGY

Genetic Algorithms (GAs) are a type of optimization
algorithm inspired by the principles of natural selection. In
GAs, a population of potential solutions is iteratively evolved
through genetic operators such as selection, crossover, and
mutation. The main advantages of GAs include their ability
to find good solutions in large and complex search spaces,
handle non-linear and non-convex objective functions, and
consider different constraints.

However, classic GAs have some limitations, such as
their inefficiency for problems with a large number of
decision variables. To address this, Multi-Objective Genetic
Algorithms (MOGAs) have been developed, which consider
multiple conflicting objectives simultaneously. MOGAs have
been widely applied in fields such as scheduling, design
optimization, and control. In our formulation, no objective is
given a preference over the others, rather we return the non-
dominated front of individuals. An overview of the steps of
our MOGA is shown in Algorithm 1.

Algorithm 1 Multi-Objective Genetic Algorithm

1: Generate initial population
2: Evaluate fitness of current individuals
3: while stopping condition is not satisfied do
4: Iteratively select pairs of parent individuals
5: Generate new individuals by crossover/mutation
6: Evaluate fitness of new individuals
7: Replace current individuals with new ones
8: end while
9: return Return set of non-dominated individuals

A. Encoding and Offspring Generation

The solutions in a GA are given by individuals in a
population. Each individual is represented by a chromosome
composed of genes. In our case, the chromosome, as depicted
in Figure 2, is constructed as a matrix, with the genes given
by the elements of the matrix. Row indices represent the N
task locations and column indices represent each of the M
vehicles. Each gene contains information about the ordering
πim, selection ξim and control points CPim of the solution.
The ordering parameter πim ∈ (0, 1) uses a random-key
scheme similar to [26] to determine the relative position
of node ni in the tour for route am. The binary selection
parameter ξim ∈ {0, 1} determines whether node ni will be
included in the route of am. The set of control points CPim

are used to define a smooth B-spline path that goes through
ni for am, specifying different control points for paths that
are incoming and outgoing from the node. For additional
details on these parameters, their initialization, offspring
generation, and fitness evaluation we refer the reader to our
previous work on the static, single vehicle case [2].

a1 aM

n1 {π11, ξ11,CP11} . . . {π1M , ξ1M ,CP1M}

n2 {π21, ξ21,CP21} . . . {π2M , ξ2M ,CP2M}
...

nN {πN1, ξN1,CPN1} . . . {πNM , ξNM ,CPNM}

Fig. 2: Representation of an individual’s chromosome with
N ×M genes, each defined by {πim, ξim,CPim}.

In the offspring generation step, we modified the process
of mutating control points relative to our previous work in
order to accommodate a greater diversity of test instances.
Control points on a certain curve are mutated by adding
a random value ∆ ∈ R2 to a given control point cp.
The movement ∆ is sampled using the beta distribution,
Beta(α, β). The beta distribution was chosen for its definition
on a closed interval, which allows us to limit the largest move
allowed, and have parameters that allow us to manipulate the
shape of the distribution.

Finally, after a new individual is generated, we execute a
validation step to guarantee that all of its tours respect the
budget constraint. If a tour’s travel time is above Tmax,m,
we repeatedly and randomly remove nodes (ξim = 0) from
it until its travel time adheres to the budget. We ensure the
smoothness of the tour by enforcing co-linearity conditions
on a subset of the control points between B-spline curves.

B. Evaluation on a Time-Varying Vector Field

The fitness of an individual is related to both objective
functions, i.e., one that is defined as the sum of the rewards
collected at the visited nodes and the second defined as the
energy expenditure along the vehicle’s tour.



Similar to [6], we assume that the net speed ∥Vnet∥ is
constant in order to reduce the search space. Modifications
could be made to accommodate an assumption of constant
thrust ∥Vu∥ following methodology laid out in [20]. These
assumptions impart an implicit time-parametrized trajectory
to the paths defined by a chromosome’s B-splines. Using
this time-parametrized trajectory, we are able to evaluate the
energy expenditure along the route in a known time-varying
vector field Vc(q, t).

V. EXPERIMENTS

We tested our method using models of ocean currents
based on wind-driven double gyre models [27], Lamb vor-
tices [24], and real-world nowcast predictions of ocean
currents from NOAA’s Global Real-Time Ocean Forecast
System (RTOFS) [3]. In the subsequent section, the wind-
driven double gyre model is given by

Vcx(q, t) = −πA sin(πf(x, t)) cos(πy) (5a)

Vcy (q, t) = πA cos(πf(x, t)) sin(πy)
∂f

∂x
(5b)

f(x, t) = ϵ sin(ωt)x2 + (1− 2ϵ sin(ωt))x. (5c)

Table I summarizes the GA parameters used in the exper-
iments. We implemented the algorithm on Python 3.7 and
used the DEAP library [28].

TABLE I: Algorithm parameters.

Parameter Value

Population size 200
Number of generations 200
Selection method NSGA-III [29]
Crossover probability 0.8
Crossover operator Two-point crossover
Mutation probability (individual) 0.6
Mutation probability (gene) 0.08
Beta Distribution (α, β) (3,4)

1) Energy Efficiency and Heterogeneous Teams: In an
optimal solution, vehicles will find energy efficient paths
relative to the ocean currents when travelling between tasks.
Vehicles can leverage the environment to increase their en-
ergy efficiency by aligning their path with the ocean currents
when possible, thereby reducing drag forces.

Fig. 3: A heterogeneous team in a static flow field.

We can see this effect clearly by examining Figure 3. In
this example, we consider a static field using the wind-driven
gyre model given by (5) with current strength A = 0.5
and time-varying amplitude ϵ = 0. Two heterogeneous
vehicles, with drag coefficients of kd,1 = 0.1, kd,2 = 0.5
and ∥Vnet∥ = 0.6 are deployed. We see that the ordering of
visits and the paths between them conform to the currents.
The distribution of rewards relative to the vehicle budget
allows for one vehicle to follow a path along the stable
and unstable manifolds of the left gyre boundary while the
other vehicle collects the rewards along the other gyres. Note
that the high drag vehicle’s path followed the gyre boundary
while the low drag vehicle collected the remaining rewards.
This result aligns with the conclusions from [12], where
they show that energy optimal paths in flows follow the
Lagrangian Coherent Structures, an extension of invariant
stable and unstable manifolds for time-dependent flows.

2) Impact of Time with Ocean Currents Nowcast Data:
Our method can be used to find routes within a time-varying
field, as illustrated in Figure 4. Time-varying ocean currents
were collected from the RTOFS database for the period of
November 9-16, 2021 in the North Atlantic Ocean. A pair
of heterogeneous vehicles, with Tmax1 = 83.3hr, Tmax2 =
55.5hr, and ∥Vnet∥ = 0.6 were deployed to a region
with uniformly distributed task locations. The frames shown
portray a solution on the non-dominated front obtained by
our method at selected timesteps.

We observe that the vehicles’ paths tend to align with
the field at the given timestep, thereby reducing drag forces.
However, this objective is balanced by the attempt to max-
imize reward and visit additional locations. Additionally,
since the vehicles are operating at a constant net speed, they
continue moving at that speed even when adaptations, such
as waiting for favorable conditions, could enable them to take
advantage of subsequent currents and increase efficiency.

Fig. 5: Comparison of time-varying informed and static
informed solutions.

We examine the impact of using a method that is informed
by the full time-varying flow field in Figure 5. The results
represent solutions to on the same test case shown from



(a) (b)

(c) (d)

Fig. 4: Solution of two vehicles in a time-varying field based on ocean currents in the North Atlantic Ocean at different
timesteps. The title shows the Reward (R) and Energy (E) collected by the team. The legend shows the heterogeneous
characteristics of the vehicles (budget Tmax,m) and the breakdown of the reward and energy collected by each vehicle. In
the final frame the length (l) and time (t) of each vehicle’s route is added to the legend

Figure 4, over 20 trials. Static informed solutions were run on
a GA that assumed the field remained constant from the first
timestep. The points shown reflect the average energy and
standard deviation for the rewards collected by individuals
along the non-dominated front. The highest levels of reward
were not reached in all trials, and the number of trials
contributing is reflected in the color of the marker. From
this plot, it is clear that the time-varying informed solutions,
on average, are able to collect the same amount of rewards
using less energy. Additionally, the standard deviation of the
solutions is lower. The increased standard deviation in the
energy for the static informed results can be explained by
noting that these solutions were not solving with complete
information of the currents. Since they were optimizing on
a flow field that did not include the changes to the field
over time, we expect there to be more variation in the actual
energy that would be expended following these routes.

3) Teams: To test that our method on teams of vehicles we
took the datasets from [21] and examined their performance
when we combined them with a background flow field of the
double gyre model (5). The workspace variables x, y were
transformed to scale the traditional domain of the double
gyre model [0, 2]× [0, 1] to the domain defined by the task
locations in the dataset. An example of one of these test cases
can be seen in Figure 6, where the double gyre parameters
used are: A = 1, ϵ = 0.5, ω = π

17.5 , and the vehicle
parameters are: kd = 0.1, ∥Vnet∥ = 1, Tmax = 17.5s.

The difference between our results and those returned

by [21] extend beyond the incorporation of information about
the background currents. Our solutions impose smoothness
constraints using B-splines, which means that paths between
nodes found by our method are not as direct. Additionally,
our solution optimizes a multi-objective, therefore we return
a family of solutions and not just the time-optimal one.

VI. CONCLUSION AND FUTURE WORK

Routing problems, such as the Orienteering Problem (OP),
are crucial for finding tour routes while considering factors
such as energy consumption and environmental conditions.
However, in real-world scenarios, features such as ocean
and atmospheric currents can greatly impact the tour, and
efficiency in terms of time and energy is critical especially
in a marine environment.

In this paper, we propose a multi-objective formulation
for a heterogeneous team operating in a time-varying flow
that accounts for energy expenditure, reward collection, and
mission budget trade-offs. We propose the use of an evolu-
tionary algorithm to solve this problem by combining the task
and path planning problems. Results considering simulated
and real-world ocean data show that our approach is able
to efficiently handle the coupling between the environmental
dynamics and vehicle operation costs.

Future work could explore the introduction of vehicles
with non-constant velocity in order to obtain more realistic
solutions that more effectively utilize the flow. Another
subsequent research direction would be to evaluate nodes
with time-varying rewards, where it might be favorable for



(a) (b)

Fig. 6: Team of vehicles set in a time-varying double gyre field.

the robot to take a longer path between adjacent locations in
order to reach a site with a higher expected reward.
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