
Multi-robot Scheduling for Environmental Monitoring
as a Team Orienteering Problem

Ariella Mansfield1, Sandeep Manjanna1, Douglas G. Macharet2, and M. Ani Hsieh1

Abstract— In this paper, we propose an evolutionary algo-
rithm for solving the multi-robot orienteering problem where
a team of cooperative robots aims to maximize the total
information collected by visiting a subset of given nodes
within a fixed budget on travel costs. Multi-robot orienteering
problems are relevant to applications such as logistic delivery
services, precision agriculture, and environmental sampling and
monitoring. We consider the case where the information gain
at each node is related to the service time each robot spends
at the node. As such, we address a variant of the Orienteering
Problem where the collected rewards are a function of the
time a robot spends at a given location. We present a genetic
algorithm solver to this cooperative Team Orienteering Problem
with service-time dependent rewards. We evaluate the approach
over a diverse set of node configurations and for different team
sizes. Lastly, we evaluate the effects of team heterogeneity on
overall task performance through numerical simulations.

I. INTRODUCTION

This paper considers the cooperative team orienteering
problem with service-time dependent rewards. The Orien-
teering Problem (OP) is a routing and scheduling problem
where the goal is to plan a fixed-budget route through a
set of predetermined locations such that the total rewards
collected is maximized. We address the multi-robot variant of
this problem where the rewards at each location are service
time dependent, e.g., the collected rewards depend on the
amount of time a robot spends at a location. Cooperative
team orienteering problems are relevant to many real-world
applications such as logistic delivery services, precision
agriculture, and environmental sampling and monitoring.

In this work, we are particularly interested in environmental
monitoring tasks for coordinating search and rescue plans,
anomaly detection, and performing geological and biological
surveys. Obtaining good estimates of these complex spa-
tial processes is critical in these applications and requires
persistent information gathering throughout the region of
interest. In the context of environmental monitoring, persistent
sensing has been tackled by deploying a uniform network
of static sensor nodes across the region of interest [1].
However, sensor networks are difficult to scale to larger
environments and most processes of interest are usually
non-uniform. In general, mapping and tracking these large-
scale non-uniform fields requires sampling at various distinct
locations in the space. As such, robots must target locations

1The authors are affliated with the GRASP Laboratory
at the University of Pennsylvania, Philadelphia, USA
{ariellam,msandeep,m.hsieh}@seas.upenn.edu

2Douglas G. Macharet is affiliated with the Computer Vision and Robotics
Laboratory (VeRLab), Computer Science Department, Universidade Federal
de Minas Gerais, MG, Brazil doug@dcc.ufmg.br

in the workspace that yield maximum information gain while
minimizing costs associated with energy expenditure, distance
traveled, inter-robot communication, and time spent at a
given location. Heterogeneous multi-robot teams have been
shown to achieve better performance in many environmental
monitoring tasks [2], [3]. We evaluate our algorithm on a
team of robots operating at different travel speeds and with
different budgets.

Fig. 1. An example real world application: Here, scientists are interested
in monitoring marine life by collecting images at fixed locations over coral
heads (red circles). Embedded images show aquatic animals like stingray
and a school of blue tang fish visiting the reef at Barbados marine reserve.

Consider the example application shown in Fig. 1, where
the objective is to monitor marine life by collecting visual
data using a robotic boat [4]. Marine biologists need persistent
data from pre-selected sighting locations with high aquatic
life activity to understand and study the population variations
and migration patterns of different species in these locations.
Predicting when a particular animal would visit one of these
locations is challenging, but one can increase the probability
of sighting by spending more time at one location. However,
collecting data at all the locations is equally important. Hence,
a data logging robot can increase the chance of sighting by
carefully dividing its time between observing at one location
and exploring other locations. As such, the information or
rewards garnered at each location increases with time.

We propose a planning and scheduling algorithm to design
multi-robot paths over a fixed set of nodes that maximizes
the total information gathered within a fixed robot budget.

The primary contribution in this paper is the formulation
of a cooperative team orienteering problem with service-time
dependent rewards and an empirical analysis of the overall
performance of heterogeneous robotic teams in such scenarios.
Since this is the first study of this problem formulation, our
goal is to provide insights into this category of problems
rather than providing the fastest algorithm. Therefore, we
show our results using a genetic algorithm, which is a well
known method for solving routing and scheduling problems.

II. RELATED WORK

The Orienteering Problem, introduced as the Selective
Traveling Salesman Problem [5], is usually described as the
combination of the Knapsack Problem (KP) and the Traveling
Salesman Problem (TSP). This is due to the fact that, given
the limited travel budget, we might need to select a subset of
the points to be visited, as well as the sequence of the visit.
The classical OP formulation has been generalized to different
variants [6], such as robots with motion constraints [7],
correlated profits [8], time-varying profits [9], and multi-agent
ensembles [10].

While employing multiple robots can yield significant
advantages, it raises many challenges in regards to planning
and coordination. The Team Orienteering Problem (TOP) is
the multi-robot variant of the classic OP formulation [10],
where robots must uniquely visit a disjoint set of locations and
maximize the total amount of rewards collected. Additional
variations include situations where multiple samples are
needed at the same location or requiring multiple agents to
collectively obtain that information. The cooperative version
of the TOP [11], [12] deals with the case that requires multiple
robots to simultaneously visit a location to collect the reward.
However, this assumption can be too restricted if we have,
for example, a scenario with time-varying rewards [9], [13].

Most existing literature related to orienteering problems
consider a fixed value for the reward associated to a location.
Erdogan et al. introduced a variant where the reward collected
depends on the time the robot spends at a location [14]. In
this variant of the problem, determination of an appropriate
service time at each location is another variable that must
be optimized. Traditional optimization approaches might be
computationally demanding [15], and heuristics have proven
to be a suitable alternative [16]. An efficient matheuristic
algorithm is proposed by Yu et al. combines a metaheuristic
approach with mathematical programming [17]. A TOP
variant that considers heterogeneous robots and precedence
constraints was considered by Hanafi et al. [18]. In their
approach, each location contains a set of tasks, and the reward
can only be acquired when all its tasks are accomplished
following a predefined order. More recently, the Generalized
TOP (GTOP) was introduced by Sakamoto et al. in [19]. They
formalize the concept of heterogeneity in both tasks and teams,
TOP being a particular case where they are homogeneous.

In this paper, we extend the ideas of [14], [18] and consider
a heterogeneous robot team variant of the TOP problem. We
also consider the case where the reward at a given location
is given by a nonlinear function over the service time [14].
Different from the traditional time-windows-based approach,
we consider that the visits can occur in an asynchronous
fashion, similar to [18].

III. PROBLEM FORMULATION

Let N = {n1, . . . ,nN} be the set of spatially distributed
target locations, with ni ∈ Rn, and let A = {a1, . . . ,aM}
be a team of cooperative robots. For the remainder of this
section, we use the indices i, j, k ∈ {1, . . . , N} to denote

location indices and the index m ∈ {1, . . . ,M} to denote
the robot, unless indicated otherwise.

Each location has a known positive maximum reward ri and
an associated function fi ∈ [0, 1]. Function f(·) is strictly in-
creasing, differentiable and concave, and determines the ratio
of the maximum reward obtained by the robots A given their
collective service time

∑M
m=1 sim, i.e., rifi(

∑M
m=1 sim). In

this work, we consider cost to be the time spent doing a
certain task, however our approach could be applied to other
definitions of cost such as energy consumption, and sensor
depletion. Thus, service cost is the time spent while the robot
performs a particular service at a location. Travel cost is the
time spent travelling between locations. The initial location
n1 and the final location nN are fixed and their maximum
rewards are assumed to be r1 = rN = 0.

The cost to travel between ni and nj for robot am is
given by tijm. We assume the costs are non-negative and
both travel cost and service cost are in same scale and units.
Heterogeneity in robots can be incorporated in tijm, for
example, if robot a1 is twice as fast as a2, then tij1 = 1

2 tij2.
Our objective is to determine a collection of paths con-

necting n1 and nN that maximizes the total collected reward
by the team A. The budget for each robot am is predefined
and fixed at Tmax,m. Note that the total budget includes the
budget for both travel and service costs. To be consistent with
existing literature, we use similar notation to that presented
by Vantsteenwegen et al. [6] and Yu et al. [17]. A formal
mathematical formulation of this problem is as follows:

Problem 1 (Cooperative TOP with Service-Based Rewards).
Given a set N of spatially distributed target locations, and a
team of cooperative robots A. The objective is to maximize
the total rewards collected by the team, i.e.:

max

N−1∑
i=2

rifi(

M∑
m=1

sim) , (1)

where ri is the maximum reward that can be collected at
node i. The function fi ∈ [0, 1] returns the ratio between the
maximum reward that can be collected at node i and the
reward collected by all the robots. The service cost, sim, is
the time that robot am spends servicing at location ni.

We define the binary decision variables xijm that indicate
whether the route for robot am includes the arc (ni,nj),
such that

xijm =

{
1, route m contains the arc (ni,nj)

0, otherwise.

Optimization of the objective given in (1) is subject to the
following constraints:

N−1∑
i=2

sim +

N−1∑
i=1

N∑
j=2

tijmxijm ≤ Tmax,m

∀m = 1, . . . ,M

(2a)

M∑
m=1

N∑
j=2

x1jm =

M∑
m=1

N−1∑
i=1

xiNm = M (2b)

N−1∑
i=1

xikm =

N∑
j=2

xkjm ≤ 1,

∀m = 1, . . . ,M, ∀k = 2, . . . , (N − 1)

(2c)

2 ≤ uim ≤N
∀i = 2, . . . , N, ∀m = 1, . . . ,M

(2d)

uim − ujm + 1 ≤ (N − 1)(1− xijm)

∀i, j = 2, . . . , N, ∀m = 1, . . . ,M
(2e)

Constraint (2a) ensures each robot adheres to the budget
constraint. Constraint (2b) ensures that each robot starts
and ends at the designated depots. Constraint (2c) ensures
the connectivity of all routes and that no robot will visit
the same node twice. The Miller-Tucker-Zemlin subtour
constraints [20] are enforced by (2d)-(2e) for all robot routes.

IV. METHODOLOGY

The cooperative multi-robot routing problem presented
here is NP-hard, since its structure is based upon a Multiple
TSP instance and the KP. Several efficient heuristics have
been proposed to tackle such class of problems, and here we
consider the use of evolutionary algorithms.

A. Evolutionary algorithm

Genetic Algorithms (GAs) are population-based meta-
heuristics that mimic the evolution process found in na-
ture [21]. GAs have shown to be a competitive approach
for similar optimization problems considering the high-
dimensional search spaces. Another advantage is that this
technique presents an anytime behavior, i.e., can return a
valid solution before the execution ends, which might classify
it also proper for on-line tasks. However, the solution tends
to be improved along with more evolution time (generations).

A GA starts by initializing a population of individuals,
where each individual represents a possible solution to the
problem. Individuals are then evaluated to compute their
fitness function, which is the value that the algorithm is
trying to optimize. Next, a part of the existing population is
used to generate an offspring generation through crossover
(re-combining different individuals to create new individuals)
and mutation (adding random changes into an individual to
create a modified individual). This cycle continues until a
stopping criteria is reached, as shown in Fig. 2.

Start

Stop

Initialize
Population

Evaluate
Fitness

Stop
Criteria

Selection

Offspring Generation

Yes

No
Crossover

Mutation

Fig. 2. Flow chart of a Genetic Algorithm.

B. Encoding, initialization, and fitness evaluation

A fundamental step in GAs is the selection of a good
representation for the individuals that compose the population.
An individual is described by a chromosome, which represents
a candidate solution to the problem, in our case, for each
robot a sequence of visits and the time it will spend servicing
each location. This information is encoded in matrix form as
shown in Fig. 3, where each column gives the route for a
single robot. The row indices represent the locations in N .
An individual element of this matrix is called a gene.

a1 a2 aM

n1 {π11, s11} {π12, s12} . . . {π1M , s1M}

n2 {π21, s21} {π22, s22} . . . {π2M , s2M}
...

nN {πN1, sN1} {πN2, sN2} . . . {πNM , sNM}

Fig. 3. Example of an individual’s chromosome representing a solution,
consisting of N ×M genes, each defined by {πim, sim}.

The sequence in which the locations will be visited is
determined by a random-key scheme as proposed by [22].
Each non-depot position has an associated parameter in the
open unit interval πim ∈ (0, 1)∀i ∈ {2, . . . N − 1}∀m ∈
{1, . . .M}, that defines the relative order in which it may be
visited by robot m. For example, if a chromosome includes
the values π42 = 0.81 and π72 = 0.23, that indicates that in
the tour of robot a2, a visit to node n4 would be preceded by
a visit to node n7. We initialize these values using a uniform
random distribution. The start and goal depots have fixed
values π1m = 0 and πNm =∞, respectively, ensuring their
relative positions in all tours.

Every robot has a service cost sim ∈ [0, Tmax,m) assigned
for each location, which is used to determine the collected
reward. We initialize service costs using the beta distribution:
sinit
im ∼ Beta(α, β)×Tmax,m. This distribution was chosen due

to the ability to tune its’ shape parameters. These parameters
were chosen so that initial service costs would be in the
interval [0, Tmax,m) but would be skewed away from Tmax,m.

The fitness of an individual is defined as the sum of
the collected rewards by all agents. This value represents
the argument of (1) which we are trying to maximize. The
objective function is dependent on fi, which determines the
ratio of the maximum reward obtained. For the purposes of
environmental monitoring, we are interested in maximizing
the probability that our robots will capture data related to
an event (e.g. marine life activity). Such a scenario can
be modelled by the cumulative distribution function of an
exponential distribution, which is typically used to model the
time until an event occurs in memoryless processes [23]:

fi(

M∑
m=1

sim) = 1− e−βi
∑M

m=1 sim ,

where βi represents the rate of decay of profit collection for
the node, or the expected number of events per unit of time.

Since genetic algorithms improve based on the fitness
function, our algorithm will work for other definitions of fi as
well. Furthermore, GAs do not require derivatives, therefore
the same procedure would even apply for a noisy fitness
function. Unlike traditional mixed-integer programs, GAs can
find solutions for non-convex optimization problems, making
them flexible enough to solve a wide array of scenarios.

C. Tour validation

The tours extracted from individuals encoded by the scheme
above do not necessarily adhere to the budget constraint given
in (2a). We introduce the following procedure, inspired by
[24], that enforces the budget constraint.

In order to extract a solution from an individual’s chro-
mosome, first, for each robot am, we order both the nodes
and associated service costs based on the sorted order of
πim. This is equivalent to sorting each of the columns of the
chromosome given in Fig. 3 independently.

Next, we calculate the cost of travelling and servicing all
the nodes in the ordered tour. Finally, starting from the end
of the tour, we flag nodes as invalid until the tour is within
the budget, i.e.,

∑N−1
i=2 sim +

∑N−1
i=1

∑N
j=2 tijmxijm ≤

Tmax,m∀m ∈ {1, . . . ,M}. Note that we maintain a flag for
invalid nodes so that we can use the original service costs
and a full set of N random key values during the offspring
generation. The service cost for the last node in the tour is
chosen such that the total travel plus service cost of the tour
is exactly equal to Tmax,m.

D. Offspring generation

The evolution process is simulated by the successive
improvement of the population, such that later generations of
the population produce better solutions. Repeatedly, genetic
operators are applied to a portion of the existing population
to generate an offspring. There are three main types of
operators: selection, crossover, and mutation. These operators
stochastically select the more fit individuals and modify the
chromosome by the recombination of genes from different
individuals or by random changes intrinsic to the individual.

The offspring generation comprises the following steps:
1) Selection: The first step is the selection of some

individuals in the population, which will be called parents
and used later for breeding. Different approaches can be
used, such as fitness-related (e.g. roulette wheel, where
parents are selected with a probability proportional to their
relative fitness in the population) or ordinal-based ones (e.g.
tournament, where ktour randomly selected individuals are
placed in tournaments against each other and the individuals
with the best fitness are selected from each tournament). We
use a tournament selection method in our work.

2) Crossover: Next, the previously selected individuals are
used as parents in the crossover step, which exploits the search
space by creating new individuals based on the already known
solutions (parents). We use a two point crossover approach.
Two indices in {1, . . . , N} are chosen randomly, these are
designated as the crossover points cp1, cp2|cp1 < cp2. Given
two parent individuals, we combine their genes to produce

two children. The first child is generated by taking the first
cp1 genes (across all robots) from the first parent, the next
cp2 − cp1 genes are taken from the second parent, and the
remaining genes are once again taken from the first parent.
The second child is the mirror image of the first child.

3) Mutation: When generating the offspring population,
an individual may be mutated with a probability of pi

mut.
For a mutated chromosome, genes will be mutated with a
probability of pg

mut. A mutated gene may change the tour
ordering and the service time relative to the associated node.
Tour ordering is mutated by adding an amount chosen from
the normal distribution, i.e.:

πim = πim + nπ | nπ ∼ N (0, σ2
mut) .

We do not allow πim ≤ 0 for m 6= 1, therefore we set any
negative ordering values to ε� 1.

Service times are mutated relative to the mean value of
the beta distribution used to initialize them. The mean value
of the initial service time values is given by:

s̄mut ≡ E[Beta(α, β)× Tmax,m] =
αTmax,m

α+ β
,

and the corresponding mutation is determined as:

sim = sim + ns|ns ∼ N (s̄mut, σ
2
mut) .

Since we do not allow sim < 0, we set any negative service
times to zero and mark their associated nodes as invalid in
the tour. Note that we do not mutate the depot values.

4) Elitism: In order to preserve the best individuals and
maintain the solution quality over generations, we make use of
elitism. We select the kelite individuals with the highest fitness
from both current population and offspring, and enforce they
are carried over into the next generation without modification.

5) Stopping Criteria: The previous steps repeat until a
stopping criteria is reached. In this work we chose a constant
number of generations for all experiments. The number of
generations was chosen empirically so that the improvement
in fitness function had sufficiently plateaued.

V. EXPERIMENTS

The simulation framework was implemented with
Python 3.7 and uses the DEAP [25] library. Table I sum-
marizes the experimental parameters used for our algorithm.
The parameters were initially selected based on the values
used in others works tackling similar problems and they were
fine-tuned empirically through a brief sensitivity analysis. We
have also considered simple well-known guidelines in order
to, for example, avoid not getting a good coverage of the
search space or premature convergence.

Test instances were obtained from the authors of [17]
so that they could be compared to the single robot case.
These test cases have target locations ni ∈ N randomly
located in R2 and associated reward caps ri as well as decay
parameters βi. Tests are derived from three sets of data: kroA,
kroB, and kroC. For each test case, the number of nodes
available is appended to the test name (e.g. kroA25 uses 25
nodes from the kroA test set). See [14], [17] for additional

Fig. 4. (a) Illustration of the planned paths for 4 robots (a1, a2, a3, and a4) through 25 nodes from simulations on kroA25 dataset. Size of the disks at
the nodes are proportional to the rewards associated with the node. (b) Bar chart showing the rewards collected by different robots at each of the nodes.
Overlapping bars (for example on node 9) illustrate that two robots shared the rewards at that particular node.

TABLE I
PARAMETER VALUES USED IN EXPERIMENTS.

Parameter Symbol Value

Population size 400
Number of generations 200
Tournament size ktour 4
Elitism selection size kelite 40
Crossover probability pcross 0.8
Mutation probability (individual) pi

mut 0.5
Mutation probability (gene) p

g
mut 0.2

Mutation variance σ2
mut 0.05

Beta distribution shape parameters (α, β) (0.5,2.5)

details on how these test cases were created. Additionally,
we generated custom test cases to validate that the algorithm
provides reasonable solutions to cases where there is an
obvious optimal distribution of routes between robots.

A. Illustrative examples

Let us first consider an intuitive test case, depicted in Fig. 5.
Nodes are evenly spaced around two circles equidistant from
the depot and rewards are equally distributed. The optimal
solution is for each robot to cover a different circle, spending
equal amounts of time at the visited nodes. Over the course
of 10 trials, our method achieves an average of 82% of the
optimal solution, with a standard deviation of 4%. Figs. 5(b),

Fig. 5. (a) A test case where the optimal solution is known: each robot
visits the nodes around a different circle, spending equal amounts of time at
every node. (b) The second robot is able to travel at 3 times the speed as
the first robot. (c) A third homogeneous robot is introduced.

(c) illustrate how the solution to this test case changes if one
robot travels more quickly or if another robot is introduced.

Fig. 4 presents the output from one of the simulation runs
on the test dataset kroA25. Fig. 4(a) illustrates the paths
planned for four robots. The nodes are numbered from 0 to
25 and the size of the disks at the nodes indicate the rewards
associated with the node. The rewards distributed among the
nodes is collected by different robots and this reward sharing
between the robots is demonstrated in the bar chart presented
in Fig. 4(b). Fig. 4(b) also shows the least rewarding nodes
(e.g., nodes 8, 21 and 24) are not visited by any robot while
others are visited by multiple robots (e.g., nodes 9 and 20).

B. Numerical analysis

Initially, we show the evolution of the fitness function
across different trials in Fig. 6, considering the test case shown
in Fig. 4. As can be seen, the average result of our approach

is consistent, and the number of generations was chosen so
that we expect to converge before the final generation.

Fig. 6. Progression of the GA’s fitness function (rewards collected) for the
kroA25 dataset with 4 robots. The black line shows the average best fitness
over 10 trials. The shaded region presents the standard deviation.

In the case of a single robot, Problem 1 is equivalent to
that solved most recently by [17]. We evaluated our algorithm
on all test cases kroA, kroB, and kroC with 25-100 nodes
over the course of 10 trials for M = 1. For the single robot
case, we find that the best results achieved by our method
reaches 81− 99% of that presented in [17]. In Table II, we
compare the rewards collected in 3 test cases by [17] to that
achieved by our method. The table compares the best result
reported in [17] to the best result from our method over 10
trials. Additionally we present the rewards accumulated when
the increasing number of robots. Each additional robot adds
budget capacity to the system. However, there are diminishing
returns on adding more robots indefinitely since the most
lucrative rewards are already collected in the single robot
case. This trend is further illustrated by the exclusive budget
scenario presented in Fig. 7.

TABLE II
REWARDS COLLECTED FROM OUR METHOD VS. MATHEURISTIC [17].

of Robots kroA25 kroB25 kroC25

Yu et al. [17] 1 509.18 529.97 512.25

O
ur

M
et

ho
d

1 491.6 495.1 511.41
2 807.28 813.88 761.96
3 948.25 1000.09 965.34
4 1064.65 1104.85 1075.57
5 1140.93 1170.54 1167.12
6 1176.76 1227.6 1242.89
7 1197.71 1250.78 1261.45
8 1213.03 1264.51 1281.04
9 1220.54 1272.52 1289.72
10 1224.59 1274.88 1294.55

Next, we evaluate the performance of our algorithm by
varying the number of robots in our planning approach. Fig. 7
shows the impact of increasing the number of robots on the
team’s overall performance. We consider two scenarios:

• Shared Budget: The total budget for the team (Tteam =
T) is fixed irrespective of the size of the team. This
fixed budget is divided between all the robots in the
team and each robot gets a budget of Tmax = T/M . If

more robots are added to the team, then each robot ends
up getting a smaller budget. For example, when a team
has a fixed amount of fuel that must be divided among
its members at deployment.

• Exclusive Budget: Each robot has its own budget
(Tmax = T) which is not shared with other members
in the team. If more robots are added to the team, the
budget for individual robots remains the same, but the
total team budget increases (Tteam = T × M). For
example, when every robot has its own built-in battery,
adding robots simply increases the total team budget.

Fig. 7. Plots showing the changes in total rewards accumulated as the
number of robots is increased (simulations on kroA25 testset). The shaded
region presents the standard deviation over 10 trials.

Fig. 7 illustrates that increasing the team size is beneficial
when every robot has its own budget. If the budget is shared
among team members, then adding more robots to the team
reduces the overall performance as it reduces each robot’s
budget. Shared budget forces all the robots to visit only a few
nearby nodes. In the exclusive budget scenario, the purple
dotted curve saturates, indicating that a team of size ≥ 9
collects most of the available rewards (1228.0). Similar trends
were seen using other datasets (kroB25, kroC25, and kroA75).

We further investigate the effect of having a team of
heterogeneous robots on the performance of our planning
algorithm. Fig. 8 presents the comparison between the rewards
shared by two robots operating at different travel speeds and
with different budget allocation. We analyse the effect of
varying the speed of one robot (a2) on the performance
of the individual robots. As expected, Fig. 8(a) shows that
increasing the speed of robot a2 allows it to collect more
rewards. The performance of the constant speed robot, a1,
decreases slightly due to the increased sharing of rewards
with the faster robot, a2. These effects level out when the
service time dominates the travel time. However, this levelling
out is only observed when the speed ratio is above 10, which
is beyond most practical applications. We see a similar trend
when the robots have different budgets in Fig. 8(b). The robot
with higher budget is able to collect more rewards. However,
we see the saturation of the reward curve for robot a2 only
after collecting higher rewards as the increase in budget gives
both additional service time and travel time allowing the robot
to collect more rewards. This curve is expected to completely
saturate once all the rewards in the world are collected.

(a) Heterogeneity in travel speed

(b) Heterogeneity in budget allocation

Fig. 8. Reward sharing between two heterogeneous robots as the travel
speed (a) or the allocated budget (b) of one of the robots (a2) is increased
(simulations on kroA50 testset). Shaded region presents the standard deviation
over 10 trials. Green arrows indicate where the robots are homogeneous.

VI. CONCLUSION AND FUTURE WORK

We proposed a planning algorithm to design multi-robot
paths over a fixed set of nodes such that the total information
gathered is maximized within a fixed robot budget. We
formulated the planning problem as a cooperative team
orienteering problem with service-time dependent rewards
and proposed the use of a genetic algorithm to solve it.
We validated our algorithm on multiple test scenarios with
varying size of the world, number of robots in the team,
and heterogeneous robots with different speeds and budgets.
Our findings suggest that adding more robots to the team
improves the overall performance of the team if every robot
is given its own exclusive budget. Our simulations show that
having some robots with faster speeds can improve a team’s
performance until the service time dominates the travel time.

For future work, we plan to explore the impact of a more
diverse set of heterogeneous robot capabilities on the team’s
performance. Additionally, we are interested in comparing
the results of our method with those from deterministic ap-
proaches. Experimental validation using multiple autonomous
surface vehicles for data collection and monitoring of marine
life is another immediate direction for future work.

REFERENCES

[1] A. Howard, M. J. Matarić, and G. S. Sukhatme, “Mobile sensor network
deployment using potential fields: A distributed, scalable solution to the

area coverage problem,” in Distributed Autonomous Robotic Systems
5. Springer, 2002, pp. 299–308.

[2] A. Prorok, M. A. Hsieh, and V. Kumar, “Fast redistribution of a swarm
of heterogeneous robots,” in Proceedings of the 9th EAI International
Conference on Bio-inspired Information and Communications Tech-
nologies (formerly BIONETICS), 2016, pp. 249–255.

[3] M. Santos, Y. Diaz-Mercado, and M. Egerstedt, “Coverage control
for multirobot teams with heterogeneous sensing capabilities,” IEEE
Robotics and Automation Letters, vol. 3, no. 2, pp. 919–925, 2018.

[4] S. Manjanna, H. Van Hoof, and G. Dudek, “Policy search on aggregated
state space for active sampling,” in International Symposium on
Experimental Robotics. Springer, 2018, pp. 211–221.

[5] G. Laporte and S. Martello, “The selective travelling salesman problem,”
Discrete Applied Mathematics, vol. 26, no. 2, pp. 193 – 207, 1990.

[6] P. Vansteenwegen and A. Gunawan, Orienteering problems: Models
and algorithms for vehicle routing problems with profits. Springer
Nature, 2019.

[7] R. Pěnička, J. Faigl, P. Váňa, and M. Saska, “Dubins Orienteering
Problem,” IEEE Robotics and Automation Letters, vol. 2, no. 2, pp.
1210–1217, April 2017.

[8] J. Yu, M. Schwager, and D. Rus, “Correlated Orienteering Problem
and its Application to Persistent Monitoring Tasks,” IEEE Transactions
on Robotics, vol. 32, no. 5, pp. 1106–1118, 10 2016.

[9] Z. Ma, K. Yin, L. Liu, and G. S. Sukhatme, “A spatio-temporal
representation for the orienteering problem with time-varying profits,” in
IEEE/RSJ International Conference on Intelligent Robots and Systems
(IROS), 2017, pp. 6785–6792.

[10] I.-M. Chao, B. L. Golden, and E. A. Wasil, “The team orienteering
problem,” European Journal of Operational Research, vol. 88, no. 3,
pp. 464–474, 2 1996.

[11] M. van der Merwe, J. P. Minas, M. Ozlen, and J. W. Hearne, “The
cooperative orienteering problem with time windows,” in Optimization
Online, 2014.

[12] I. Roozbeh, M. Ozlen, and J. W. Hearne, “A heuristic scheme for the
Cooperative Team Orienteering Problem with Time Windows,” CoRR,
2016.

[13] L. Reyes-Rubiano, A. A. Juan, C. Bayliss, J. Panadero, J. Faulin,
and P. Copado, “A Biased-Randomized Learnheuristic for Solving the
Team Orienteering Problem with Dynamic Rewards,” Transportation
Research Procedia, vol. 47, pp. 680–687, 2020.

[14] G. Erdoǧan and G. Laporte, “The orienteering problem with variable
profits,” Networks, vol. 61, no. 2, pp. 104–116, 2013.

[15] J. Yu, J. Aslam, S. Karaman, and D. Rus, “Anytime planning of
optimal schedules for a mobile sensing robot,” in 2015 IEEE/RSJ
International Conference on Intelligent Robots and Systems (IROS),
2015, pp. 5279–5286.

[16] D. Gavalas, C. Konstantopoulos, K. Mastakas, G. Pantziou, and
N. Vathis, “Heuristics for the time dependent team orienteering problem:
Application to tourist route planning,” Computers & Operations
Research, vol. 62, pp. 36 – 50, 2015.

[17] Q. Yu, K. Fang, N. Zhu, and S. Ma, “A matheuristic approach to the
orienteering problem with service time dependent profits,” European
Journal of Operational Research, vol. 273, no. 2, pp. 488–503, 2019.

[18] S. Hanafi, R. Mansini, and R. Zanotti, “The multi-visit team orienteering
problem with precedence constraints,” European Journal of Operational
Research, vol. 282, no. 2, pp. 515 – 529, 2020.

[19] T. Sakamoto, S. Bonardi, and T. Kubota, “A Routing Framework
for Heterogeneous Multi-Robot Teams in Exploration Tasks,” IEEE
Robotics and Automation Letters, vol. 5, no. 4, pp. 6662–6669, 2020.

[20] C. E. Miller, A. W. Tucker, and R. A. Zemlin, “Integer programming
formulation of traveling salesman problems,” Journal of the ACM
(JACM), vol. 7, no. 4, pp. 326–329, 1960.

[21] M. Mitchell, An Introduction to Genetic Algorithms. Cambridge, MA,
USA: MIT Press, 1998.

[22] J. C. Bean, “Genetic Algorithms and Random Keys for Sequencing
and Optimization,” ORSA Journal on Computing, vol. 6, no. 2, pp.
154–160, 1994.

[23] J. K. Blitzstein and J. Hwang, Introduction to probability. Chapman
and Hall/CRC, 2019.

[24] T. Ilhan, S. M. Iravani, and M. S. Daskin, “The orienteering problem
with stochastic profits,” Iie Transactions, vol. 40, no. 4, pp. 406–421,
2008.

[25] F.-A. Fortin, F.-M. De Rainville, M.-A. Gardner, M. Parizeau, and
C. Gagné, “DEAP: Evolutionary algorithms made easy,” Journal of
Machine Learning Research, vol. 13, pp. 2171–2175, jul 2012.

