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ABSTRACT

Dynamical emergent patterns of swarms are now fairly well established in nature and include flocking and rotational states. Recently, there
has been great interest in engineering and physics to create artificial self-propelled agents that communicate over a network and operate with
simple rules, with the goal of creating emergent self-organizing swarm patterns. In this paper, we show that when communicating networks
have range dependent delays, rotational states, which are typically periodic, undergo a bifurcation and create swarm dynamics on a torus. The
observed bifurcation yields additional frequencies into the dynamics, which may lead to quasi-periodic behavior of the swarm.

https://doi.org/10.1063/5.0006540

Swarming behavior occurs when a large number of self-propelled
agents interact using simple rules. Natural swarms of biological
systems have been observed at a range of length scales forming
complex emergent patterns. Engineers have drawn inspiration
from these natural systems, resulting in the translation of swarm
theory to communicating robotic systems. Example applications
of artificial swarms include exploration and mapping, search and
rescue, and distributed sensing and estimation. Through con-
tinued development, an additional parameter of delay in com-
munication between artificial agents has become an important
consideration. Specifically, it was previously discovered that com-
munication delay will create new rotational patterns that are not
observed without delay, both theoretically and experimentally.
Here, we extend the understanding of communication delays
to reveal the effects of range dependent delay, where the com-
munication between agents depends on the distance between
agents. The results of the research show that by including range
dependent delay, new rotational states are introduced. We show
how these new states emerge, discuss their stability, and dis-
cuss how they may be realized in large scale robotic systems.

In improving our theoretical understanding of predicted swarm
behavior modeled in simulation, we can better anticipate what
will happen experimentally. Additionally, it is possible to lever-
age the predicted autonomous behaviors to try and force different
swarm behavior.

I. INTRODUCTION

Swarming behavior, which we define as the emergence of spa-
tiotemporal group behaviors from simple local interactions between
pairs of agents, is widespread and observed over a range of applica-
tion domains. Examples can be found in biological systems over a
range of length scales, from aggregates of bacterial cells and dynam-
ics of skin cells in wound healing1–3 to dynamic patterns of fish,
birds, bats, and even humans.4–7 These systems are particularly
interesting because they allow simple individual agents to achieve
complex tasks in ways that are scalable, extensible, and robust to
failures of individual agents. In addition, these swarming behaviors
are able to form and persist in spite of complicating factors such
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as delayed actuation, latent communication, localized number of
neighbors each agent is able to interact with, heterogeneity in agent
dynamics, and environmental noise. These factors have been the
focus of previous theoretical research in describing the bifurcating
spatial-temporal patterns in swarms, as seen, for example, in Refs.
8–11. Likewise, the application of swarms has been experimentally
realized in areas such as mapping,12 leader-following,13,14 and density
control.15 To guarantee swarming behavior experimentally, control
is typically employed16–20 to prove convergence to a given state by
relying on strict assumptions to guarantee the desired behavior.
However, by relaxing certain assumptions, a number of studies show
that even with simple interaction protocols, swarms of agents are
able to converge to organized, coherent behaviors in a self-emergent
manner, i.e., autonomously without control. Different mathematical
approaches yielded a wide selection of both agent-based4,5,7,21 and
continuum models that predict swarming dynamics.2,8,22 In almost
all models, since the agents have just a few simple rules, there
exists only a relatively small number of controllable parameters. The
parameter set usually consists of a self-propulsion force, a potential
function governing attracting and repelling forces between agents,
and a communicating radius governing the local neighborhood at
which the agents can sense and interact with each other.

In both robotic and biological swarms, an additional parame-
ter appears as a delay between the time information is perceived and
the actuation (reaction) time of an agent. Such delays have now been
measured in swarms of bats, birds, fish, and crowds of people.23–25

The measured delays are longer than the typical relaxation times of
the agents and may be space and time dependent. Robotic swarms
experience communication delays, which provide similar effects to
the delay experienced in natural swarms. Incorporating stationary
delays along with a minimal set of parameters in swarm models
results in multi-stability of rotational patterns in space.26–30 In par-
ticular, for delays that are equal and fixed, one observes three basic
swarming states or modes: Flocking, which is a translating center
of mass; ring state, where the agents are splayed out on a ring in
phase about a stationary center of mass; and rotating state, where
the center of mass itself rotates.

Synthetic robotic swarms have communication delays that
naturally occur over wireless networks as a result of low
bandwidth31 resulting in delayed communication and multi-hop
communication.32 In cases where the delays are fixed and equal and
the communication occurs on a homogeneous network, it is known
that delays create new rotational patterns, as has been verified
both theoretically and experimentally.27,28 However, in situations
with robots, even simple communication models are based on the
distance between agents.33,34

Following from these models, if one assumes that the delays are
range dependent, the problem becomes one of studying state depen-
dent delays where delays depend implicitly on the relative positions
between agents.

When placing swarms in realistic complex environments,
delays are not necessarily a continuous function of range, but
rather, it is the increasing probability of delays increasing stochas-
tically when agents move further away from one another beyond
a certain radius.35,36 That is, the rate of communication becomes
spatially dependent, whereby near agents see a signal with a fast
rate of communication, but due to shading and fading of signals,

communication rates are slowed and complex outside a given radius.
Underwater communication is an excellent swarm example where
delays outside a significant radius impart rates of communication of
one to two orders of magnitude greater than local communication
rates.37

The swarm model that follows takes a globally coupled swarm
and explicitly relaxes the fixed delay assumption by including range
dependent delay based on a fixed communication radius. We show
that when range dependent delays are included, new frequencies
are introduced and generate bifurcations to a torus. The result is
a milling type of swarm that depends on just a few parameters.
The results here are important for robotic swarming where one
of the goals is to produce desired patterns autonomously, without
external controls. The pattern formations predicted here show how
delayed information, whether coming from communication, actu-
ations, or both, impacts the stability of swarm states, such as ring
and/or rotating states. By revealing those parameter regions where
patterns are destabilized, we provide a comprehensive characteriza-
tion of the autonomously accessible swarm states in the presence of
range dependent delay.

II. THE SWARM MODEL

Consider a swarm of delay-coupled agents in R
2. Each agent

is indexed by i ∈ {1, . . . , N}. We use a simple but general model for
swarming motion. Each agent has a self-propulsion force that strives
to maintain motion at a preferred speed and a coupling force that
governs its interaction with other agents in the swarm. The interac-
tion force is defined as the negative gradient of a pairwise interaction
potential U(·, ·). All agents follow the same rules of motion; however,
mechanical differences between agents may lead to heterogeneous
dynamics; this effect is captured by assigning different acceleration
factors (denoted κi) to the agents. In this paper, we assume κi = 1
for all i. For the effect of heterogeneity on the swarm bifurcations,
see Ref. 9.

Agent-to-agent interactions occur along a graph G = {V, E},
where V is the set of vertexes vi in the graph and E is the set of edges
eij. The vertices correspond to individual swarm agents, and edges
represent communication links, that is, agents i and j communicate
with each other if and only if eij ∈ E. All communication links are
assumed to be bi-directional, and all communications occur with a
time delay τ . That is, range dependence is not included. Let ri ∈ R

2

denote the position of the agent i and let Ni = {vj ∈ V : eij ∈ E}

denote its set of neighbors of agent i. The motion of agent i is
governed by the following equation:

r̈i = κi(1 − ‖ṙi‖
2)ṙi − κi

∑

j∈Ni

∇xU(ri(t), r
τ
j (t)), (1)

where superscript τ is used to denote the time delay so that rτ
j (t)

= rj(t − τ), ‖·‖ denotes the Euclidean norm, and ∇x denotes the
gradient with respect to the first argument of U. The first term in
Eq. (1) governs self-propulsion, where the speed has been normal-
ized to unity, that is, without coupling the agents always asymptote
to unit speed.
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To analyze the dynamics of a large scale swarm, we use a
harmonic interaction potential with short-range repulsion,

U(ri, r
τ
j ) = cre

−
‖ri−rj‖

lr +
a

2N

∥

∥

∥

ri − rτ
j

∥

∥

∥

2

. (2)

In Eq. (1), it is assumed that the communication delay, τ , is
independent of the distance, or range, between any pair of agents.
(Notice that the exponent of the repulsion term is independent of
the delay since the repulsion force is local.) With the addition of
delays in the network, it was shown in homogeneous communica-
tion networks that in addition to the usual dynamical translating and
milling (or ring) states, for sufficiently large τ , new rotational states
emerge.27 In particular, for a given attractive coupling strength, there
is a delay that destabilizes the periodic ring state into a rotating state,
in which the agents coalesce to a small group and move around a
fixed center of rotation; this behavior is quite different from the ring
state where agents are spread out in a splay state phase. The rotating
state is only observed with delay introduced in the communication
network, and it appears through a Hopf bifurcation.

However, in real-world robotic swarms, communication delays
are not uniform between all pairs of agents; delays may be stochastic
or even state dependent. For example, if agents are communicating
over a multi-hop network, the delay will increase with the number
of hops required to send a message from one agent to the other and,
in general, will scale with the separation between them. In order to
handle range dependent delays, we will make an approximation that
depends on a communication range radius.

A. Approximating range dependent delayed coupling

For the coupling term, we are interested in introducing an
approximation to range based coupling delay. Since all communi-
cating agents send signals with some delay, we compute relative
distances defined as

Dτ
i,j ≡ ||ri − rτ

j ||. (3)

We define a Heaviside function, H(x), that is, zero when x ≤ 0 and 1
otherwise, and we employ global coupling based on a spring poten-
tial. For our range dependent metric, we let ε ≥ 0 denote the range
radius. Suppose that when the separation between two agents is
small, that is, less than ε, then sensing between two agents is almost
immediate. In practice, the time needed for sensing depends on sev-
eral factors, such as actuation times, and so distances in practice are
computed with delay. Therefore, we model the coupling term for the
ith agent as

Ci(ri, rj, r
τ
j , ε) = −

a

N
(∇xU(ri(t), r

τ
j (t)))H(Dτ

i,j − ε)

−
a

N
(∇xU(ri(t), rj(t)))(1 − H(Dτ

i,j − ε)), (4)

where the first coupling term has the delay turned on since the dis-
tance is outside a ball of radius ε, while the second term has no delay
since the distance is within the ε ball. The resulting swarm model

with range dependence from Eq. (4) is now

r̈i = κi(1 − ‖ṙi‖
2)ṙi − κi

∑

j∈Ni

Ci(ri, rj, r
τ
j , ε). (5)

If the delayed distance is within an ε ball, then we evaluate the
coupling without delay. Otherwise, the coupling is delayed. Thus,
the coupling function takes into account when delay is active or not
between pairs of communicating agents and depends on the range
radius, ε.

The Heaviside function of the right hand side of Eq. (9)
renders the differential delay equation derivatives discontinuous,
and as such poses a numerical integration problem. To mollify
the lack of smoothness, we approximate H(x) by letting H(x)
≈ 1

π
arctan(kx) + 1

2
, where k � 1 and constant, and limits on the

Heaviside function as k → ∞.
Using only the delayed distance to compute a range dependent

coupling assumes that any measurement is not instantaneous. If one
were to be able to compute the ideal situation where delay would not
be a sensing factor, then certain issues would need to be resolved,
which we do not consider here.

B. Numerical simulations of full swarms

Examples of simulations using the swarm model with the range
dependent coupling are shown below. Here, the number of agents
N = 150, and the coupling strength a = 2.0. For the remainder of
the analysis, we set cr = 0, and note that the attractors persist when
the repulsive amplitude is sufficiently small27 (see the supplementary
material for a video of the dynamics with small repulsion).

Note that even when ε is very small, as shown in Fig. 1, we
observe a mix of clustered states which are a combination of pure
ring and rotation states. The agents tend to cluster into local groups,
and the clusters move in clockwise and counterclockwise directions
as in the ring state. Here, however, the phase differences between
agents are non-uniform. When examining a single random agent,
as shown in Fig. 2, it is periodic with a sharp frequency of rotation,
and the relative positions of all individual agents are phase locked.

FIG. 1. Three snapshots of swarm state in space for ε = 0.01,
a = 2.0, and τ = 1.75. Sample times t0, t1 = t0 + 20, and t2 = t0 + 40.
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FIG. 2. Swarm ring state for ε = 0.01, a = 2.0, and τ = 1.75. (a) Time series
of the x-component of a single agent. (b) The power spectrum showing a sharp
frequency. (c) A phase portrait of the orbit of a single agent. The red point denotes
the center of mass.

When considering the center of mass of the positions over all agents,
R ≡ 1

N

∑

i ri, the center of mass does small amplitude oscillations
about a fixed point (not shown).

As the radius ε increases, instability of the periodic mixed
state occurs, giving rise to more complicated behavior, as seen
in Fig. 3. New frequencies are introduced, causing the ring state
to appear as a quasi-periodic attractor. Moreover, the dynam-
ics of the center of mass has its own non-trivial dynamics
which includes the effects of new frequencies. By examining the
Poincare map of the attractors, the instability gives rise to dynam-
ics, which we conjecture is motion on a torus. Letting (Mx, My)

denote the time averaged center of mass over all agents, we com-
pute the sequence x(ti), i = 1 . . . M when y(ti) = 0 and x(ti) >

Mx. The result is shown in the two panels in Fig. 4. Panel (a)
shows a complicated toroidal motion after transients are removed
of the center of mass in Fig. 3(c). For a single frequency, the
dynamics of the center of mass would be a single fixed point.
The addition of new frequencies is revealed in the Poincare

FIG. 3. Swam instability ε = 0.25, a = 2.0, and τ = 1.75. (a) Time series of
the x-component of a single agent. (b) The power spectrum showing a slight
broadening and birth of a new frequency. (c) A phase portrait of the orbit of a
single agent.

map as complicated motion on a torus. For larger values of ε,
the motion on the torus converges to a periodic attractor in
panel (b).

III. MEAN FIELD EQUATION OF RANGE DEPENDENT

DELAY-COUPLED SWARM

In order to shed some light on the origin of the bifurcation to
dynamics on a torus, we examine the full swarm model from a mean
field perspective. The mean field is much lower dimensional, and a
full bifurcation analysis may be done. We consider the case of all-to-
all communication. Let

R =
1

N

N
∑

i=1

ri

and

ri = R + δri,

Chaos 30, 051106 (2020); doi: 10.1063/5.0006540 30, 051106-4
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FIG. 4. Poincare map of Eqs. (1)–(4) for (a) ε = 0.25 and (b) ε = 0.5. Other
parameters are fixed: a = 2.0 and τ = 1.75. See text for details.

where δri is a fluctuation term with the identity, and

N
∑

i=1

δri = 0. (6)

Then, we can write Eq. (5) as

R̈ + δr̈i = (1 − |Ṙ + δṙi|
2)(Ṙ + δṙi)

−
a

N

N
∑

j=1,j6=i

((R + δri) − (Rτ + δrτ
j ))C1,i

−
a

N

N
∑

j=1,j6=i

((R + δri) − (R + δrj))C2,i, (7)

where

C1,i = H(‖ri − rτ
j ‖ − ε)

= H(‖(R + δri) − (Rτ + δrτ
j )‖ − ε)

= H(‖R − R
τ + δri − δrτ

j ‖ − ε)

and

C2,i = 1 − C1,i.

We use the following to reduce the equations of motion to the mean
field: from Eq. (6), we note

N
∑

i=1

δrτ
i =

N
∑

j=1,j6=i

δrτ
j + δrτ

i = 0 ⇐⇒ −

N
∑

j=1,j6=i

δrτ
j = δrτ

i . (8)

We further assume that all perturbations from the mean, δri,
are all negligible (this is always true if the coupling amplitude is suf-

ficiently large). In addition, we use the fact that
a(N − 1)

N
limits to a,

as N → ∞. Therefore, we obtain mean field approximation for the
center of mass of range dependent coupled delay case,

R̈ = (1 − |Ṙ|2) · Ṙ − a(R − R
τ ) · H(‖R − R

τ‖ − ε). (9)

IV. NUMERICAL ANALYSIS OF THE MEAN FIELD

EQUATION

A. Examples of rotational attractors

As in the case for the full multi-agent system, we see the exis-
tence of periodic behavior for τ sufficiently below an instability
threshold, as shown in the time series of Fig. 5. As we increase τ , we

FIG. 5. Periodic motion of the mean field equation (9) for ε = 0.01,
a = 0.64, and τ = 1.6. (a) Time series of the x-component of the mean field.
(b) Power spectra of the time series.
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FIG. 6. Quasi-periodic motion of the mean field equation (9). (a) Time series of
the x-component of the mean field. Solid (red) line denotes period length of dom-
inant spectral peak. Dashed line denotes period length of secondary peak. (b)
Power spectra of the time series.

expect the periodic orbit to lose stability, resulting in a new attractor.
In particular, one notices the emergence of a new frequency in addi-
tion to the existing dominant one, as shown in Fig. 6 The additional
frequency usually implies a bifurcation to dynamics on a torus or a
higher dimensional torus.

We now investigate this transition by tracking the stabil-
ity via monitoring the Floquet exponents corresponding to the
periodic orbit. For a general differential delay equation given by
ẋ(t) = F(x(t), x(t − τ)), if φ(t) = φ(t + T) for all t ≥ 0, then stabil-
ity is determined by examining the linearized equation along φ(t),

Ẋ(t) =
∂F

∂x(t)
(φ(t), φ(t − τ))X(t)

+
∂F

∂x(t − τ)
(φ(t), φ(t − τ))X(t − τ). (10)

The stability of the periodic solution is determined by the spec-
trum of the time integration operator U(T, 0), which integrates
Eq. (10) around φ(t) from time t = 0 to t = T. This operator is called
the monodromy operator and its (infinite number of) eigenvalues,
which are independent of the initial state, are called the Floquet
multipliers.38 For autonomous systems, it is necessary and sufficient
there exists a trivial Floquet multiplier at 1, corresponding to a per-
turbation along the periodic solution.39,40 The periodic solution is
stable provided all multipliers (except the trivial one) have modulus
smaller than 1; it is unstable if there exists a multiplier with modulus
larger than 1. Bifurcations occur whenever Floquet multipliers move
into or out of the unit circle. Generically, three types of bifurcations
occur in a one parameter continuation of periodic solutions: a turn-
ing point, a period doubling, and a torus bifurcation where a branch

FIG. 7. Bifurcation plot showing the norm of the periodic orbits as a function of
delay τ . Parameter a=0.68. Red (blue) markers denote unstable (stable) orbits.
Cyan symbols denote the change in stability where a pair of complex eigenvalues
cross the imaginary axis.

of quasi-periodic solutions originates and where a complex pair of
multipliers crosses the unit circle.38

We have tracked a set of stable periodic orbits for various radii
of ε and located the change in stability by computing the Floquet
multipliers. The results plotted in Fig. 7 show that for a range of radii
ε, there exists a bifurcation to a torus at some delay. Notice that as
ε increases, there results an increase in the size of the orbits, which
qualitatively agrees with our full agent based simulations.

Since there exists a range of delays that destabilize periodic
swarm dynamics for each ε, we summarize the onset of torus bifur-
cations by plotting the locus of points at which stability changes as

FIG. 8. Plotted is the locus of points at which torus bifurcations emerge as a
function of coupling amplitude a, delay τ for various range radii ε for the mean
field equation (9).
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a function of coupling amplitude and delay. The results are plotted
in Fig. 8.

Figure 8 is revealing in that it shows a functional relationship
of the bifurcation onset that is similar over a range of ε. For larger
values of ε, it is clear that lower values of delay and coupling are
required to generate bifurcations. This holds true over two orders of
ε. For a fixed value of ε, we also see monotonic relationship between
delay and coupling strength, so that it is easier for smaller delays to
destabilize periodic motion for larger coupling strengths.

V. CONCLUSIONS

We considered a new model of a swarm with delay-coupled
communication network, where the delay is considered to be range
dependent. That is, given a range radius, delay is on if two agents are
outside the radius and zero otherwise. The implication is that small
delays do not matter if the agents are close to each other.

The additional range dependence creates a new set of bifur-
cations not previously seen. For general swarms without delay, the
usual states consist of flocking (translation) or ring/rotational state
(milling), with agents spread in phase. With the addition of a fixed
delay, a rotational state bifurcates that has all agents in phase and
rotate together.41 Range dependence introduces a new rotational
bifurcating state that exhibits behavior observed as a new mixed state
combining dynamics of both ring and rotating states.

The radius parameter, ε, was used to quantify the bifurcation
of the rotational mixed state. For small ε, we see that the dynam-
ics for the full swarm shows clustered counter-rotational behavior
that is periodic. This agrees for small radius values in the mean field
description as well. As the radius increases, the mixed periodic state
generates new frequencies in the full model, which are manifested as
torus bifurcations in the mean field. Mean field analysis was done by
tracking Floquet multipliers that cross the imaginary axis as complex
pairs. Frequency analysis explicitly shows the additional frequencies
in the mean field.

Finally, we tracked the locus of coupling amplitudes and delay
for various values of ε locating the parameters at which torus bifur-
cation occur. The results reveal that as ε increases, torus bifurcations
onset at lower values of coupling amplitude and delay. The implica-
tions are that more complicated behavior than periodic motion has a
greater probability of being observed in both theory and experiment
if range dependence of delay is included.

SUPPLEMENTARY MATERIAL

The videos in the supplementary material show the attrac-
tor of a swarm consisting of N = 300 agents. Fixed parameters for
the three videos are a = 2.0 and τ = 1.75. The parameters for zero
radius (delay is on all the time) are ε = 0.0, cr = 0.05, and lr = 0.05
for a baseline, as shown in Video1_eps_0p0.mp4. The parameters
corresponding to Fig. 2 are ε = 0.01, cr = 0.01, and lr = 0.05, as
shown in Video2_eps_0p01.mp4. The video shows that the attractor
persists when repulsive forces are local and weak. Similar behavior
is observed when N=150, which is used in Fig. 1 without repulsion,
i.e., cr = 0. The parameters corresponding to Fig. 3 are ε = 0.25,
cr = 0.05, and lr = 0.05, as shown in Video3_eps_0p25.mp4.

ACKNOWLEDGMENTS

I.B.S., J.H., I.T., and K.K. gratefully acknowledge the ONR for
their support (Nos. N0001412WX20083 and N0001420WX00034)
and the NRL Base Research Program (No. N0001420WX00410).
V.E. was supported under the NRL Karles Fellowship Program
(No. JON 55-N2Q4-09). S.K. was supported through the GMU
Provost Ph.D. award as part of the Industrial Immersion Program.
M.A.H. was supported by the ONR (No. N00014-18-1-2580) and
ARL DCIST CRA (No. W911NF-17-2-0181).

DATA AVAILABILITY

Data sharing is not applicable to this article as no new data were
created or analyzed in this study.

REFERENCES
1E. O. Budrene and H. C. Berg, “Dynamics of formation of symmetrical patterns
by chemotactic bacteria,” Nature 376, 49–53 (1995).
2A. A. Polezhaev, R. A. Pashkov, A. I. Lobanov, and I. B. Petrov, “Spatial patterns
formed by chemotactic bacteria Escherichia coli,” Int. J. Dev. Biol. 50, 309–314
(2006).
3R. M. Lee, D. H. Kelley, K. N. Nordstrom, N. T. Ouellette, and W. Losert, “Quan-
tifying stretching and rearrangement in epithelial sheet migration,” New J. Phys.
15, 025036 (2013).
4K. Tunstrøm, Y. Katz, C. C. Ioannou, C. Huepe, M. J. Lutz, and I. D. Couzin,
“Collective states, multistability and transitional behavior in schooling fish,” PLoS
Comput. Biol. 9, e1002915 (2013).
5D. Helbing and P. Molnar, “Social force model for pedestrian dynamics,” Phys.
Rev. E 51, 4282–4286 (1995).
6L. Giuggioli, T. J. McKetterick, and M. Holderied, “Delayed response and
biosonar perception explain movement coordination in trawling bats,” PLoS
Comput. Biol. 11, e1004089 (2015).
7S.-H. Lee, “Predator’s attack-induced phase-like transition in prey flock,” Phys.
Lett. A 357, 270–274 (2006).
8C. M. Topaz and A. L. Bertozzi, “Swarming patterns in a two-dimensional
kinematic model for biological groups,” SIAM J. Appl. Math. 65, 152–174
(2004).
9K. Szwaykowska, L. M.-Y.-T. Romero, and I. B. Schwartz, “Collective motions of
heterogeneous swarms,” IEEE Trans. Automat. Sci. Eng. 12, 810–818 (2015).
10L. Mier-y-Teran Romero, E. Forgoston, and I. B. Schwartz, “Noise, bifurca-
tions, and modeling of interacting particle systems,” in Proceedings of the IEEE/RSJ
International Conference on Intelligent Robots and Systems (IEEE, 2011), pp.
3905–3910.
11J. Hindes, K. Szwaykowska, and I. B. Schwartz, “Hybrid dynamics in
delay-coupled swarms with mothership networks,” Phys. Rev. E 94, 032306
(2016).
12R. K. Ramachandran, K. Elamvazhuthi, and S. Berman, “An optimal con-
trol approach to mapping GPS-denied environments using a stochastic robotic
swarm,” in Robotics Research: Volume 1, edited by A. Bicchi and W. Burgard
(Springer International Publishing, Cham, 2018), pp. 477–493.
13D. S. Morgan and I. B. Schwartz, “Dynamic coordinated control laws in multiple
agent models,” Phys. Lett. A 340, 121–131 (2005).
14J. Wiech, V. A. Eremeyev, and I. Giorgio, “Virtual spring damper method
for nonholonomic robotic swarm self-organization and leader following,”
Continuum Mech. Thermodyn. 30, 1091–1102 (2018).
15H. Li, C. Feng, H. Ehrhard, Y. Shen, B. Cobos, F. Zhang, K. Elamvazhuthi,
S. Berman, M. Haberland, and A. L. Bertozzi, “Decentralized stochastic control
of robotic swarm density: Theory, simulation, and experiment,” in 2017 IEEE/RSJ
International Conference on Intelligent Robots and Systems (IROS) (IEEE, 2017),
pp. 4341–4347.
16H. G. Tanner, A. Jadbabaie, and G. J. Pappas, “Flocking in fixed and switching
networks,” IEEE Trans. Automat. Contr. 52, 863–868 (2007).

Chaos 30, 051106 (2020); doi: 10.1063/5.0006540 30, 051106-7

https://aip.scitation.org/journal/cha
https://doi.org/10.1063/5.0006540#suppl
https://doi.org/10.1038/376049a0
https://doi.org/10.1387/ijdb.052048ap
https://doi.org/10.1088/1367-2630/15/2/025036
https://doi.org/10.1371/journal.pcbi.1002915
https://doi.org/10.1103/PhysRevE.51.4282
https://doi.org/10.1371/journal.pcbi.1004089
https://doi.org/10.1016/j.physleta.2006.04.065
https://doi.org/10.1137/S0036139903437424
https://doi.org/10.1109/TASE.2015.2403253
https://doi.org/10.1103/PhysRevE.94.032306
https://doi.org/10.1016/j.physleta.2005.03.074
https://doi.org/10.1007/s00161-018-0664-4
https://doi.org/10.1109/TAC.2007.895948


Chaos ARTICLE scitation.org/journal/cha

17V. Gazi, “Swarm aggregations using artificial potentials and sliding-mode
control,” IEEE Trans. Robot. 21, 1208–1214 (2005).
18A. Jadbabaie, J. Lin, and A. S. Morse, “Coordination of groups of mobile
autonomous agents using nearest neighbor rules,” IEEE Trans. Automat. Contr.
48, 988–1001 (2003).
19C. Viragh, G. Vasarhelyi, N. Tarcai et al., “Flocking algorithm for autonomous
flying robots,” Bioinspir. Biomim. 9, 025012 (2014).
20J. P. Desai, J. P. Ostrowski, and V. Kumar, “Modeling and control of formations
of nonholonomic mobile robots,” IEEE Trans. Robot. Autom. 17(6), 905–908
(2001).
21T. Vicsek, A. Czirok, E. Ben-Jacob, I. Cohen, and O. Shochet, “Novel
type of phase transition in a system of self-driven particles,” arXiv:0611743v1
(2006).
22L. Edelstein-Keshet, D. Grunbaum, and J. Watmough, “Do travelling band solu-
tions describe cohesive swarms? An investigation for migratory locusts,” J. Math.
Biol. 36, 515–549 (1998).
23L. Giuggioli, T. McKetterick, and M. Holderied, “Delayed response and
biosonar perception explain movement coordination in trawling bats,” PLoS
Comput. Biol. 11, e1004089 (2015).
24N. Nagy, Z. Akos, D. Biro, and T. Vicsek, “Hierarchical group dynamics in
pigeon flocks,” Nature 464, 890–893 (2010).
25J. Fehrenbach, J. Narski, J. Hua, S. Lemercier, A. Jelic, C. Appert-Rolland,
S. Donikian, J. Pettré, and P. Degond, “Time-delayed follow-the-leader model for
pedestrians walking in line,” Am. Inst. Math. Sci. 10, 579–608 (2014).
26L. M.-Y.-T. Romero, E. Forgoston, and I. B. Schwartz, “Coherent pattern pre-
diction in swarms of delay-coupled agents,” IEEE Trans. Rob. 28, 1034–1044
(2012).
27K. Szwaykowska, I. B. Schwartz, L. Mier-y Teran Romero, C. R. Heckman,
D. Mox, and M. A. Hsieh, “Collective motion patterns of swarms with delay
coupling: Theory and experiment,” Phys. Rev. E 93, 032307 (2016).
28V. Edwards, P. deZonia, M. A. Hsieh, J. Hindes, I. Triandaf, and I. B. Schwartz,
“Delay-induced swarm pattern bifurcations in mixed-reality experiments,” Chaos
(submitted); preprint arXiv:2003.05986.
29J. Hindes and I. B. Schwartz, “Rare slips in fluctuating synchronized oscillator
networks,” Chaos 28, 071106 (2018).

30K. Szwaykowska, I. B. Schwartz, and T. W. Carr, “State transitions in generic
systems with asymmetric noise and communication delay,” in 11th International
Symposium on Mechatronics and its Applications (ISMA) (IEEE, 2018), pp. 1–6.
31M. Komareji, Y. Shang, and R. Bouffanais, “Consensus in topologically interact-
ing swarms under communication constraints and time-delays,” Nonlinear Dyn.
93, 1287–1300 (2018).
32L. Oliveira, L. Almeida, and P. Lima, “Multi-hop routing within TDMA slots
for teams of cooperating robots,” in 2015 IEEE World Conference on Factory
Communication Systems (WFCS) (IEEE, 2015), pp. 1–8.
33M. ying Ani Hsieh, P. Srivastava, V. Kumar, and C. J. Taylor, “Compos-
able communication constraint-based control,” in Mobile Robots XVII, edited by
D. W. Gage (SPIE, 2004), Vol. 5609, pp. 192–200.
34M. A. Hsieh, A. Cowley, J. F. Keller, L. Chaimowicz, B. Grocholsky, V. Kumar,
C. J. Taylor, Y. Endo, R. C. Arkin, B. Jung, D. F. Wolf, G. S. Sukhatme, and
D. C. MacKenzie, “Adaptive teams of autonomous aerial and ground robots for
situational awareness,” J. Field Robot. 24, 991–1014 (2007).
35J. Fink, A. Ribeiro, and V. Kumar, “Robust control for mobility and wireless
communication in cyber–physical systems with application to robot teams,” Proc.
IEEE 100, 164–178 (2012).
36J. Fink, A. Ribeiro, and V. Kumar, “Robust control of mobility and communi-
cations in autonomous robot teams,” IEEE Access 1, 290–309 (2013).
37F. Arrichiello, D. Liu, S. Yerramall, A. Pereira, J. Das, U. Mitra, and
G. Sukhatme, “Effects of underwater communication constraints on the control
of marine robot teams,” in Proceedings of the 2nd International ICST Conference
on Robot Communication and Coordination (ROBOCOMM, 2009).
38J. K. Hale, Theory of Functional Differential Equations, Applied Mathematical
Sciences (Springer-Verlag, New York, 1977).
39F. Hartung, T. Krisztin, H. Walther, and J. Wu, “Functional differential equa-
tions with state-dependent delays: Theory and applications,” in Handbook of
Differential Equations: Ordinary Differential Equations (Elsevier, 2006), Vol. 3,
Chap. 5, pp. 435–545.
40J. K. Hale and S. M. V. Lunel, Introduction to Functional Differential Equations
(Springer, New York, 1993).
41J. Hindes, V. Edwards, S. Kamimoto, I. Triandaf, and I. B. Schwartz, “Unstable
oscillations and bistability in delay-coupled swarms,” arXiv:2002.12420 (2020).

Chaos 30, 051106 (2020); doi: 10.1063/5.0006540 30, 051106-8

https://aip.scitation.org/journal/cha
https://doi.org/10.1109/TRO.2005.853487
https://doi.org/10.1109/TAC.2003.812781
https://doi.org/10.1088/1748-3182/9/2/025012
https://doi.org/10.1109/70.976023
http://arxiv.org/abs/arXiv:0611743v1
https://doi.org/10.1007/s002850050112
https://doi.org/10.1371/journal.pcbi.1004089
https://doi.org/10.1038/nature08891
https://doi.org/10.3934/nhm.2015.10.579
https://doi.org/10.1109/TRO.2012.2198511
https://doi.org/10.1103/PhysRevE.93.032307
http://arxiv.org/abs/arXiv:2003.05986
https://doi.org/10.1063/1.5041377
https://doi.org/10.1007/s11071-018-4259-1
https://doi.org/10.1002/rob.20222
https://doi.org/10.1109/JPROC.2011.2161427
https://doi.org/10.1109/ACCESS.2013.2262013
https://doi.org/10.4108/ICST.ROBOCOMM2009.5826
http://arxiv.org/abs/arXiv:2002.12420

	I. INTRODUCTION
	II. THE SWARM MODEL
	A. Approximating range dependent delayed coupling
	B. Numerical simulations of full swarms

	III. MEAN FIELD EQUATION OF RANGE DEPENDENT DELAY-COUPLED SWARM
	IV. NUMERICAL ANALYSIS OF THE MEAN FIELD EQUATION
	A. Examples of rotational attractors

	V. CONCLUSIONS
	ACKNOWLEDGMENTS

