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Abstract— We present a path planning strategy for a mag-
netic millirobot where the nonlinearities in the external mag-
netic force field (MFF) are encoded in the graph used for
planning. The strategy creates a library of candidate MFFs
and characterizes their topologies by identifying the unstable
manifolds in the workspace. The path planning problem is
then posed as a graph search problem where the computed
path consists of a sequence of unstable manifold segments and
their associated MFFs. By tracking the robot’s position and
sequentially applying the MFFs, the robot navigates along each
unstable manifold until it reaches the goal. We discuss the theo-
retical guarantees of the proposed strategy and experimentally
validate the strategy.

I. INTRODUCTION

For actuation of small-scale robotic systems, magnetic
control methods have garnered significant interest since
magnetic fields can be selectively applied without affecting
non-magnetic materials [1]–[3]. This is particularly useful
when working with biological cells and tissues [4]. Exist-
ing approaches in magnetic control of single and multiple
microrobots have mostly focused on two aspects of the
problem: 1) design of the physical geometry of the robot,
and 2) design of devices to manipulate the local magnetic
field. In both cases, the focus is on the local forces that the
magnetic field can exert on the robot, rather than the global
topology of the resulting force field. And yet, existing work
in controlling autonomous vehicles in fluid flows have shown
that the vector field topology can be leveraged for planning
energy efficient trajectories [5]–[7], maintaining sensors in
the desired monitoring regions [8]–[10], and for diagnosing
the underlying dynamics of the system.

These results build upon the recent synthesis of ideas
from nonlinear dynamics and fluid dynamics to develop the
concept of Lagrangian coherent structures (LCS), which pro-
vides a new way of understanding transport. In general, LCS
provide a method to identify key material lines that organize
transport in a flow. For time-independent, periodic, or quasi-
periodic flows, there exists a well-known and detailed under-
standing of transport that is based on having knowledge of
critical points and stable or unstable manifolds. However, for
aperiodic flows, one must rely on the modern characterization
using LCS [11]. Critical points, stable/unstable manifolds,
and their time varying counterparts – LCS, can also be used
to understand transport in magnetic fields since, as in fluid
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flows, these topological structures separate the phase space
into regions where the magnetic fields result in different
types of motion [12].

Previous work has shown that it is possible to utilize the
spatially varying gradients of the magnetic field to manip-
ulate microrobots along dynamically distinct trajectories in
2-D [13], and in 3-D [14]. In [13] a global field is generated
by four stationary electromagnetic coils placed with the
coils perpendicular to the plane. Using the spatially varying
magnetic field gradients close to the coil and linearly super-
imposing the magnetic fields, different forces were applied
on identical magnets at close proximity by mapping forces
exerted on the robots to the coil input currents. Different
from previously existing magnetic control techniques, [13]
took advantage of the spatial variations in the magnetic force
field generated by the four stationary coils by varying the
currents through the coils. Thus, it enabled the trajectories
to be executed simultaneously without the need to introduce
additional complexity in the form of heterogeneous robots,
i.e., robots of different shapes and/or magnetization, or a
specialized substrate.

While [13] did not explicitly address the global topol-
ogy of the total magnetic force fields used to actuate the
microrobots, the approach effectively leveraged the inherent
nonlinearities of the field. In this work, we present a method
for constructing a graph that connects topological features
of the external magnetic force fields. We show how this
graph can be used in a path planning and trajectory following
strategy for millimeter and micro scale robots. A significant
advantage of leveraging topological features of the force
vector field is that it does not require complete knowledge
of the field and yet results in comparable performance to
vehicles following optimal paths where the vector field has
been explicitly accounted for [5]. To the author’s knowledge,
this is one of the first attempts to employ knowledge of
magnetic force field topology in designing more effective
magnetic control strategies for microrobot applications.

The rest of the paper is organized as follows: We provide
some background and formulate the problem in Section II.
The proposed methodology is presented in Section III and
its theoretical properties are analyzed in Section IV. Exper-
imental validation of the strategy is presented in Section V
and discussed in Section VI. A brief discussion of directions
for future work is presented in Section VII.

II. PROBLEM FORMULATION
A. Background

We are interested in developing motion and path plan-
ning strategies for millimeter and micron scale robots that
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Fig. 1: (a) Experimental setup used to generate magnetic fields by running
currents through 4 coils. (b) Schematic representation of the setup.

leverages the inherent nonlinearities in the external magnetic
fields used to actuate them. A ferromagnetic particle with
a magnetic dipole m placed in a magnetic field B will
experience a magnetic force and torque given by:

FB = (m ·∇)B, (1a)

τ = m×B. (1b)

In general m depends on the material properties and the
geometry of the particle.

In this work, we assume the magnetic field is generated
by N stationary electromagnetic coils placed with the coils
perpendicular to a planar workspace as shown in Fig. 1. The
magnetic field generated at a point in space by a current
running through a wire is given by the Biot Savart equation:

B(L, I) =
µ0I
4π

∫
C

ds× L̂
L2 (2)

where
∫

C denotes the line integral over the current path C and
ds denotes a differential coil segment vector in the direction
of the positive current flow. The magnetic permeability of
free space is denoted by µ0, I is the current running through
the coil, and L, L̂ are the distance and unit vector from ds
to the point of interest, respectively.

To evaluate the contribution of each coil to the resultant
magnetic field, consider the magnetic field generated by a
single loop of wire with radius R such that the loop is parallel
to the y− z plane with the loop center located at (0,0,0).
Using (2), the contribution of this coil loop to the magnetic
field is at a point [x,y,0]T is given by [15]:

Bx =
µ0IR
4π

∫ 2π

0

ysinφ ′−R
(R2 + y2 + x2−2yRsinφ ′)1.5 dφ

′,

By =−
µ0IRx

4π

∫ 2π

0

sinφ ′

(R2 + y2 + x2−2yRsinφ ′)1.5 dφ
′,

Bz = 0.

(3)

Thus, these expressions for the magnetic field are used to
compute the force and torque, e.g., (1), exerted on a robot (a
permanent magnet) by a single coil in the workspace. The
torque acts to align the dipole of the robot with the field,
B. In this model, we assume that this reorientation occurs
immediately for the robot, and the robot is always torque free
[16], [17]. Additionally, we assume assume that the effect of
the applied magnet field on the magnetization of the robot
is negligible.

Given the magnetic force on the magnetic object, the net
force driving its motion can then be computed by summing
all the contributions of the N coils. In this work we assume
a linear drag law for resistive force. The magnetic force
field (MFF) created by four stationary electromagnetic coils
placed around a planar workspace similar to the one in Fig.
1 is shown in Fig. 2a. The stable and unstable manifolds for
this field are highlighted in yellow in Fig. 2b.

The manifolds in Fig. 2b separate the phase space into
regions where the MFF exhibits different types of behavior.
This can be seen by examining the corresponding vector field
shown in Fig. 2a. The saddle point at the location denoted by
P1 has associated stable and unstable manifolds which are
respectively denoted by MS and MU in Fig. 2b. These man-
ifolds partition the space into dynamically distinct regions.
Thus, robots starting on opposite sides of these boundaries
travel along dynamically distinct trajectories. By initiating
robots at different positions in the workspace and switching
between fields with different manifold arrangements, the
nonlinearity and the topology of the global MFF can be
leveraged to control single and possibly multiple microrobots
in the workspace as shown in Figs. 2c - 2f.

In this example, both robots are initialized in a region of
the workspace where the dynamics are consistent based on
the arrangements of stable and unstable manifolds, i.e., the
MFF topology, regardless of the field. The field shown in
Fig. 2c does not contain any critical points nor manifolds
and thus applying this field would drive the robots towards
the right side of the workspace. Similarly, for the same
starting positions, if we apply the field shown in Fig. 2a,
then both microrobots’ starting position would be to the left
of MU . Thus, if we only apply the field shown in Fig. 2e,
the robots would remain to the left of MU for all time. As
such, the trajectories for the two microrobots shown in Fig.
2 would be infeasible if only one of the fields is used to
drive the microrobots. By sequentially applying one field
after the next, the robots are thus able to reach a portion
of the workspace that would otherwise be inaccessible had
only one field been used. The idea of sequentially switching
the external magnetic fields to control the motions of active
microrobots has been shown in [18]. However, [18] only
switched between spatially uniform fields and thus did no
consider nor utilize the topology of the field.

Unfortunately, the identification of critical points, mani-
folds, or LCS can only be achieved analytically or through
global knowledge of the vector field. Fortunately, a variety of
numerical techniques have been developed to find unstable
and stable manifolds and LCS for a wide range of dynamical
systems. Some of these techniques include the Principle
Interior Maximum (PIM) triple procedure for chaotic systems
[19], Finite Time Lyapunov Exponents (FTLE) for LCS [20].
We refer the interested reader to [21] for a broad survey of
existing techniques. In this work, we propose a path planning
strategy for magnetically actuated microrobots that leverages
sequential switching between time-invariant MFFs of varying
topologies. Thus, our approach will focus on the leveraging
the manifolds in static MFFs rather than LCS in time-varying
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Fig. 2: (a) Vector field and (b) stable and unstable manifolds of a magnetic
field generated using four inward-facing electromagnetic coils with equal
currents. (c)-(f) Example of two robot trajectories with the starting positions
denoted by a 4 and end positions denoted by ©. These trajectories were
obtained by applying the force field shown in (c) whose manifolds are
shown in (d) for 19 seconds, followed by applying the force field shown
in (e) whose manifolds are shown in (f) for 30 seconds. The portion of
the trajectories resulting from the background field is shown in solid red
and the portion resulting from the other field is shown in dashed black.
The stable and unstable manifolds were obtained through the computation
of finite time Lypunov exponents (FTLEs) [20] and are highlighted in in
yellow.

MFFs.

B. Problem Statement

Let Q denote the configuration space of the microrobot
with qs and qg denoting the robot’s desired initial and final
configurations. The kinematics of a ferromagnetic microrobot
operating in a planar fluid workspace surrounded by N elec-
tromagnetic coils mounted perpendicular to the workspace is
given by:

q̇ = α∇

(
||B(q,I)||

)
(4)

where α is a constant related to the magnetic dipole moment,
the millirobot mass, and the Stokes drag. Note that B is
the resultant magnetic field where the contributions from
each coil is given in (3). In this work, we assume the robot
aligns with the magnetic field instantaneously and the robot
is always torque free. This assumption is reasonable when
the time it takes the robot to align with the field is negligible
relative to the time it takes the robot to execute the trajectory.
Furthermore, at the millimeter and micron scales, robots

effectively operate in a low Reynolds regime and thus the
robot velocity is assumed to be proportional to the actuating
force [22]. Given these assumptions, the robot kinematics
are effectively holonomic. Coupled with the fact that Bi from
each coil is linear in I, we note that the robot experiences the
same velocity for both positive and negative current values.
This is true as long as the effects of other external fields,
e.g. Earth, are negligible relative to the generated field.

Let U = {I1, . . . ,IK} denote the discrete set of K feasible
input currents that generates the set of MFFs to actuate the
robot for an N coil system. In general, K depends on N and
is chosen such that for every i, j ∈ {1, . . . ,K} the topologies
of the ith and jth MFFs are sufficiently distinct. Then the
path and trajectory planning problem for the microbot can
be mathematically stated as follows:

τu
∗ = argmin

τu

∫ tg

ts
C(τu(t), t)dt

s.t. q̇ = α∇

(
||B(q,u)||

)
τu(qs, ts) = qs

τu(qs, tg) = qg

τu(qs, t) ∈ Q,∀t ∈ [ts, tg]

tg ∈ [ts,∞)

(5)

where C(τu(t), t)dt > 0 can denote path length, energy ex-
penditure, and/or travel time. The solution to this optimiza-
tion problem should yield a MFF switching strategy that
consists of an ordered sequence of feasible input currents
when applied would drive the robot from the initial to the
final desired configurations.

III. METHODOLOGY

The objective is to develop a path planning algorithm
that leverages the nonlinearities in the controlled kinematic
field of the robot. We accomplish this by first identifying
the unstable manifolds in each MFF generated by every
element in U . The path planning problem is then formulated
as a graph search problem where the vertices represent
intersections between manifolds in different MFFs and edges
denote trajectories along candidate manifolds that the robot
traverse to move from one intersection point to another. We
describe our methodology in detail below.

A. Planning Paths Along Unstable Manifolds

We begin by identifying the unstable manifolds, if they
exist, of the MFFs generated by a set of predetermined input
currents given by U . Given a saddle point in the field, the
unstable manifold of the saddle point is given by the direction
of instability of the local linear approximation of the field
dynamics around the point. A passive particle originating
within a small neighborhood of a saddle point, will move
away from the saddle point locally exponentially fast and
approach the unstable manifold as it moves away from the
saddle point. Thus, trajectories along unstable manifolds are
locally attracting by nature as illustrated in Fig. 2a. The
basin of attraction refers to the local attracting neighborhood



around the unstable manifold. As long as the robots stay
within this basin of attraction, they will always converge
onto a trajectory which corresponds to an unstable manifold.

Our ability to generate a path from arbitrarily chosen start
and goal locations in the workspace depends on how densely
our workspace can be covered by unstable manifolds for a
given set of U and their associated MFFs. A sparsely covered
workspace will be more limited in the set of reachable
configurations. Coverage thus is a function of N, the number
of coils used, their arrangement around the workspace, and
the input currents to the coils. By better understanding
the topology of the available MFFs, the design of coil
arrangements as well as the choice for K, number of feasible
input currents, can be better determined. Fig. 3a provides a
schematic on how coverage density of the workspace can be
determined for a four coil arrangement. As such, we assume
K is determined a priori and chosen to achieve some desired
coverage density dictated by the particular application.

Given K, it is possible to create a roadmap for the
workspace by looking at the intersections of all the manifolds
extracted from each MFF created from the set of feasible
input currents U . Let M denote the total number of unstable
manifolds obtained from the feasible current set U . Fig. 3d
shows the set of unstable manifolds extracted from a four
coil arrangement similar to the one shown in Fig. 1 overlayed
onto a 10cm×10cm workspace. The roadmap is then given
by the graph G = (V ,E ) such that the vertex set V is given
by the intersection point(s) of any two unstable manifolds,
Mi and M j, for any i, j ∈ {1, . . . ,M}. Then a directed edge
ekl ∈ E exists if the force along the manifold that connects
vk,vl ∈ V moves a particle (or robot) from vk to vl . In
general, given a set of feasible currents U , it is difficult to
predict the size of G a priori without a thorough analysis
of the MFF topologies. Nevertheless, once constructed, G
serves as the roadmap for the workspace.

Given the roadmap G and a desired start and goal con-
figurations, qs,qg ∈ V , any graph search methodology, e.g.
Dijkstra’s or A∗, can be used to find the optimal path. In
situations when qs,qg /∈ V but are located directly on a
manifold in M , G can be expanded by adding the points
qs and qg to V and their corresponding edges to E . When
qs,qg are not on any manifold in M , let q′s and q′g denote the
closest points to qs and qg respectively located on manifolds
in M . Then, G is expanded by adding the points q′s, q′g
to V and their corresponding edges to E . The output of
the search strategy would then consist of the set output
currents Upp = {Ik1 , . . . ,IkP} ⊂ U where ki ∈ {1, . . . ,K} ∀i
and their a sequence of manifolds Mpp = {Ml1 , . . . ,MlP}
where li ∈{1, . . . ,M} ∀i that constitutes the robot’s trajectory.
It is important to note that Mli is a manifold that exists
in the MFF generated by the input current Iki and thus
|Upp| = |Mpp|. The procedure is summarized in Algorithm
1.

B. Trajectory Following

To enable the robot to follow the output path given by
Algorithm 1, the set of input currents Upp are applied

Algorithm 1: Path Planning Along Manifolds
Result: A path with P steps that is defined along

manifolds {Mli}P
i=1 from start qs to goal qg

and an associated discrete set of current
inputs {Iki}P

i=1
1 given K sets of current inputs;
2 for i← 1 to K do
3 find unstable manifolds generate by Ii;
4 V ← add new intersections between manifolds;
5 E ← add new edges
6 end
7 G = (V ,E );
8 graph search from qs to qg (e.g. Dijkstra’s, A∗)

outputs a path with P steps

sequentially. For every Iki ∈ Upp applied, the robot should
travel along the corresponding Mli ∈Mpp. As robots move
along Mli , position feedback control is used to determine
when to switch the current input signal from Iki to Iki+1 so
the robot can move along Mli+1 . To allow robots to move
continuously from one manifold to the next, switching occurs
when robots are within some neighborhood of Mki+1 as it
moves along Mki . Let p denote a point on the manifold
Mli such that Bp denotes an open ball centered around
p. We define the neighborhood of Mli as the open set
Nli , {∪Bp∀p ∈Mli |‖p− pc

li
‖ > δ} where pc

li
is a critical

point on Mli . In other words, the neighborhood of Mli
effectively forms a tube around Mli that does not include
the region around the critical points on Mli . For any robot
q ∈Nli , the following is true:

a) The robot is in the basin of attraction of manifold Mli
of the MFF generated by Iki as long as the radius Bp
is chosen to be large enough; and

b) The trajectories of points originating in Nli before
the next manifold Mli+1 will intersect with the next
manifold Mli+1 in the set Mpp.

To ensure robots successfully switch from one manifold
to the next, we require that switch between successive Iki ’s
in Upp satisfy the following criteria:

(i) It occurs before the robot’s trajectory in Nli intersects
the next manifold Mli+1 .

(ii) If i= lp, i.e., the robot is moving along the last manifold
in Mpp, the input current is set to 0 once the robot is
within an ε-neighborhood of qg.

Condition (i) ensures the robot does not cross the next
manifold as it moves along its current manifold. This ensures
that robots are always traveling in a direction such that they
converge onto the path given by Mpp. Condition (ii) ensures
that the robot stops within some ε > 0 distance from the goal
location. In practice, switching between input currents occurs
when D(q,Mli+1) < δ where D(,̇)̇ denotes the straight line
distance and δ > 0 is a suitably small constant. A schematic
of these conditions are shown in Fig. 4a for some candidate
set of manifolds. The trajectory following algorithm is given
by Algorithm 2.



Fig. 3: The graph of superimposed unstable manifolds is generated by: (a) modeling the MFF for each current set in U . (b) extracting the unstable manifolds
from each field. (c) superimposing these manifolds all together. (d) Zoomed in view after many manifolds have been extracted. The intersections of the
superimposed manifolds become vertices V and the connections between them become directed edges E .

(a) (b)

Fig. 4: (a) Illustration of a neighborhood Nl1 (in orange) before it intersects
with the next manifold Ml2 . Trajectories in green show how robots will
converge onto the path (by switching currents to Ik2 when they reach the
intersections denoted with a star). (b) In the last neighborhood NlP the robot
reaches an ε-neighborhood (in green) from the goal (blue diamond).

If the robot leaves the neighborhood Nli of the manifold
it is following, Algorithm 2 is not guaranteed to hold. In this
case, Algorithm 1 can be used to calculate a new path from
the current location to the goal.

Remark 1: By leveraging the topology of the MFFs, the
proposed planner is agnostic to the dipole moment, at least
under the assumption that inertia is negligible.

Remark 2: Since changes in the current input are based
on the robot’s position, position feedback control can occur
at a relatively slow rate relatively to the robot’s speed. As
long as the robot stays within Nli as it moves along Mli and
reaches Nli+1 , then the computed path remains valid.

Remark 3: In situations where qs and/or qg are not on
any manifold in M and are outside the region of attraction
of Ml1 , MlP respectively, it is possible to append an initial
and/or final input current, Is, Ig, to the set Upp such that
the MFFs associated with Is, Ig drives the robot towards
the Nl1 and an ε-neighborhood of qg respectively. Since
these distances are generally small, especially when coverage
density for the workspace is high, Is, Ig can be determined
relatively easily.

IV. ANALYSIS

We present the theoretical properties of our proposed path
planning and trajectory following strategy.

Theorem 1: Given G = (V ,E ), Upp, and Mpp, for any qs
and qg such that qs,qg ∈ V , Algorithm 2 will drive a robot
to within an ε-neighborhood of qg.

Proof: We will prove this by induction. Let q(n) denote
the robot’s position at the nth iteration of Algorithm 2.

Algorithm 2: Executing Planned Path
Result: Robot follows trajectory planned from start

qs to goal qg
1 use Algorithm 1 to obtain P discrete sets of currents
{Iki}P

i=1 to follow and corresponding manifolds
{Mli}P

i=1 along which the robot will travel ;
2 initial robot location q = qs;
3 i=1;
4 while Condition (ii): ||q−qg||> ε do
5 apply currents Iki ;
6 if i < P∧ Condition (i): q ∈Nli∧ before Mli+1

then
7 i=i+1
8 end
9 end

For the base case with n = 1 and q(1) ∈ Nl1 , the applied
current is given by Ik1 . Thus the robot’s trajectory converges
towards Ml1 and will intersect with Ml2 . Furthermore, we
only switch from Ik1 to Ik2 when the robot enters the region
given by Nl1 ∩Nl2 but before the robot crosses Ml2 . Thus,
n = 1, the robot converges towards Ml1 as it moves in the
direction of the intersection of Ml1 and Ml2 .

Suppose the theorem holds for all values of n up to some
p ≥ 1. Then for the inductive step, let n = p + 1. Then
q(p+ 1) ∈Nlp+1 and the applied current is given by Ikp+1 .
Thus, the robot’s trajectory converges towards Mlp+1 and
will intersect with Mlp+2 . Switching from Ikp+1 to Ikp+2
when the robot enters Nlp+1 ∩Nlp+2 but before the robot
crosses Mlp+2 . Thus, the robot converges towards Mlp+1 and
moves towards the intersection of Mlp+1 and Mlp+2 . If n=P,
then the algorithm stops and the current is set to 0 when
‖q(P)−qg‖< ε for some ε > 0.

V. EXPERIMENTS

A. Setup

We validated our results using the 4 coil configuration
shown in Fig. 1a. The coils are made of 22 gauge insulated
copper wire, wrapped 40 times around an acrylic core with
an inner diameter of 51 mm. Current through the coils is
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Fig. 5: Example trajectories shown on zoomed in views of video images.
Dark grey lines represent the reference trajectory, the actual trajectory
followed is shown in green, and the current position of the robot is
circled in red. Highlighted portions from (a) shown in Fig. 6. Trajectories:
(a) [−9.0,−0.5]→ [12.2,−5.8]mm (b) [−3.1,−1.5]→ [22.6,−3.0]mm (c)
[−2.5,−1.4]→ [8.8,−10.0]mm.

provided by a power source and controlled using a computer
via a digital-to-analog converter (DAC). An overhead camera
and the OpenCV library [23] is used to track the position of
the robot in the workspace.

Robots are cut from a ferrite sheet with dimensions of
1.6×2 mm. We magnetized the robots using a neodymium
permanent magnet. They are actuated by the magnetic field
generated from the currents in the surrounding coils. In
this work, we include Earth’s magnetic field, which adds a
spatially constant offset to the fields generated by the coils.
Thus, the total magnetic field experienced by the robot is
given by:

B(x,y, I1, I2, I3, I4) =
4

∑
i=1

Bi(x,y, Ii)+Bearth. (6)

The planar workspace consists of a 93.5 mm diameter petri
dish filled with water. As mentioned in Section III, our path
planning and trajectory following strategy is agnostic to the
dipole moment. While dipole moment influences the speed
at which the robot traverses the manifolds, it does not impact
our algorithm or solution. Thus, the robot’s dipole moment
was not computed.

In our experiments, the set U was obtained by considering
input values between −0.7 A and 0.7 A for each current,
with a total of |U | = 687 sets of currents. Since measuring
the entire MFF is difficult, we computed the MFF for each set
of candidate values of Ii using (3) and (4). The magnitude of
Earth’s magnetic field was obtained empirically and added to
each MFF. The set of unstable manifolds in the workspace
were then extracted numerically for each candidate MFF.
This resulted in 1454 elements in M . Fig. 3d shows the
unstable manifolds for all the fields generated by currents in
U superimposed on the center region of the workspace.

B. Results

Various paths obtained using Algorithm 1 were experi-
mentally validated using Algorithm 2 to follow the computed
paths. We required that paths did not have switches that were
too close together and that the angle between subsequent
manifolds was sufficiently large to allow the robot to prac-
tically follow the path. These conditions could be added as
formal constraints to the optimization problem, if desired.

(a) (b)

(c) (d)

Fig. 6: Zoomed in view of trajectory at different steps along the path
shown in Fig. 5a, outline colors correspond to highlighted portions there.
Black lines represent Mpp. The actual trajectory followed is shown in
green. Robot location is shown with a red ∗. Arrows indicate the MFF.
(a) I = [−0.35,−0.7,0.35,0.35]A, (b) I = [0.35,−0.35,−0.7,0]A, (c) I =
[0.7,0,−0.35,−0.7]A, (d) I = [0,0,−0.35,−0.35]A

Fig. 7: Error along the trajectory shown in Fig. 5a. The error is measured as
the distance from the current manifold that the robot is following. Negative
values correspond to robot distance on the other side of the manifold.

Three example paths are shown in Fig. 5. The path shown
in Fig. 5a consists of 8 distinct manifolds obtained from a
total of 7 switches. Fig. 6 shows the robot’s trajectory, the
previous, current, and next manifolds in the robot’s path, and
the current MFF used to actuate the robot for 4 different time
instances.

Fig. 5c shows an example where the robot follows a path
that contains a cycle. We include this example to show
a feature of the proposed methodology even though the
path may not be an optimal path as stated in our problem
statement.

Lastly, Fig. 7 shows error between the robot’s position
and the closest point on the manifold the robot is currently
following over the course of a run. The error was computed
using the robot’s position and the manifold numerically



extracted from the computed MFFs. We note that any errors
accumulated due to noise or model errors zeros out every
time the input current switches and the robot starts following
a new manifold. This is a significant advantage of the
topological approach since robots switch between locally
attracting neighborhoods of the manifolds as they traverse
their paths.

VI. DISCUSSION

In general, it is difficult to provide a quantitative compar-
ison between the proposed strategy and existing approaches
since existing strategies do not address the topology of the
MFF. Nevertheless, we consider a qualitative comparison
between the proposed strategy and the one presented in
[13] since Wong et al. explicitly used the spatial variations
in the MFFs to achieve simultaneous control of multiple
microrobots.

In [13], different forces were applied on identical magnets
at close proximity by mapping forces exerted on the robots
to the coil input currents. To enable the robots to follow
the desired trajectories, the map is inverted to solve for the
currents required to exert the desired force given the robot
positions. This inverse mapping cannot be derived explicitly
as the force does not depend linearly on the position or on the
current (since the orientation of the robot’s magnetic dipole is
also a function of the current). The desired force is calculated
using a feedback control strategy that changes depending on
the robot’s current and desired position, velocity and accel-
eration. Much of the complexity of the strategy described in
[13] was the need to solve the inverse dynamics problem at
waypoints along the planned path which often yield multiple
solutions, i.e., input current values for the four different coils.
These challenges arose specifically because the approach did
not explicitly consider the topology of the MFF.

Different from [13], this work examines the topology
of the MFFs and developed a path planning strategy that
leverages the inherent dynamics around unstable manifolds
in the various MFFs. The approach circumvents the need to
solve the inverse dynamics problem and the need to select
among multiple possible solutions. The proposed planner is
also agnostic to the robot’s magnetic dipole moment and
thus can be used whenever the torque free assumption on
the robot holds. By leveraging the topology of the MFFs,
the strategy is more robust to uncertainties that may arise
from noisy position estimates or inaccurate model parameters
as evidenced from our results. While the proposed strategy
requires the predetermination of the a candidate set of inputs
U and the extraction of the manifolds for all possible MFFs,
these computations are done a priori and significantly limits
the complexity of the strategy at run-time. Finally, the
performance of the proposed strategy deteriorates when dust
or dirt are present in the fluid, but this is not surprising
since the planner was developed assuming an obstacle free
workspace and the presence of such particulates invalidates
that assumption. Nevertheless, the proposed planning strat-
egy can be easily extended to environments with obstacles
as long as the obstacles can be suitably localized.

(a) (b)

(c) (d)

Fig. 8: (a) Three robots are placed near different manifolds of a field where
I = [0.35,0.35,0.7,0.35]A. Manifolds shown in red, arrows denote MFF, and
robots’ trajectories shown by black data-points. (b)-(d) Applying different
subsequent currents can lead to significantly different results. Red star shows
robot location at the end of the previous current set. Dashed line shows
subsequent trajectory.

VII. FUTURE WORK

We present a path planning and trajectory following
algorithm that leverages the inherent nonlinearities in the
external magnetic force field (MFF) to navigate a millirobot
from one desired configuration to another in an obstacle-
free workspace. By identifying all the unstable manifolds in
a set of predetermined candidate MFFs, the path planning
problem can be posed as a graph search problem. The
planned path is then a sequence of current inputs such
that when applied sequentially enables the robot to travel
along an unstable manifold in each of the generated MFFs.
Switching is accomplished by tracking the robot’s position as
it moves along its path and occurs when the robot reaches the
neighborhood of the intersection point between the current
and next manifold on the path. We prove how the proposed
strategy can guarantee the arrival of the robot at the desired
final configuration given our assumptions. We experimentally
validate the proposed strategy and discussed its advantages.

One direction of immediate future work is to consider how
the global topology of the MFFs can be leveraged to achieve
simultaneous control of multiple robots along dynamically
distinct trajectories. Consider the placement of two robots on
opposite of a stable manifold. Stable manifolds are along the
directions of local attraction in a small enough neighborhood
of a saddle point. Particles moving on opposite sides of the
stable manifold are locally repelled away from the manifold
itself. Similarly, particles will be attracted towards unstable
manifolds. In each MFF, we can then use these stable and



unstable manifolds as repellers and attractors in the field.
Thus, by strategically placing multiple robots in distinct
initial configurations, coupled with switching between dis-
tinct MFFs, it is possible to achieve simultaneous control
and navigate the team along vastly distinct trajectories and
paths. Consider the example shown in Fig. 8 where three
robots are positioned in the field such that each follows
a different unstable manifold (Fig. 8a). Fig. 8b-8d show
three different sets of paths resulting from the application
of three distinct sets of input currents. While the addition
of multiple robots would significant complicate the search
problem, nevertheless by leveraging the topology of the
MFFs it may be possible to achieve more complex collective
behaviors, e.g., aggregation, pattern formation, especially as
the size of the robots are scaled down.

Another interesting direction for future work is to develop
continuous paths for robots to follow along manifolds. In-
stead of following a discrete set of unstable manifolds in
MFFs, we would be interested in investigating methods to
gradually change the placement of the manifolds. Gradual
changes of the manifolds would enable smoother paths and
perhaps allow for greater control of the robot trajectory.
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