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Abstract— Robots are expected to operate in dynamic envi-
ronments, such as teaming up with human or searching for
specific targets. In such cases, robots are required to perform
collaboration environmental mapping and semantic reasoning
. This abstract proposes a novel probabilistic framework for
simultaneous collaborative mapping and reasoning (SCMR).
For each mission, robots first apply heterogeneous sensor fusion
model to detect humans and separate them from the static
environment. Then, the collaborative mapping is performed to
estimate the relative position between robots and local 3D maps
are integrated into a globally consistent 3D map. Next, by
leveraging the transformation relationship among the robots,
collaborative dynamic reasoning can accurately analyze each
person’s motion by sharing observations from neighboring
robots. The experiment is conducted in a rainforest with
moving people. The results show the accuracy, robustness, and
versatility of 3D map fusion and human uniqueness reasoning
in multi-robot missions.

I. INTRODUCTION

The human-robot teaming has garnered significant atten-
tion in recent years [1]. In static unstructured environment,
the author considered multi-robot localization and collabo-
rative mapping in RT-DUNE Workshop 2018 [2]. In more
challenging dynamic environment, it is crucial that the multi-
robot systems could analyze the dynamic human motions,
and further reason their uniqueness [3]. On the other hand,
accurate static mapping also requires the detection and filter-
ing of dynamic objects in the environment. Then, robots can
plan their motion by considering the motion of people. This
abstract considers these two problems jointly and provides
simultaneous collaborative mapping and reasoning (SCMR)
as a possible solution.

The key novelty of this work is the mathematical modeling
of the overall SCMR problem and the derivation of its prob-
ability decomposition. Specifically, by detecting and filtering
out dynamic people in the environment, the robot can achieve
more accurate relative positioning and global mapping. In
addition, collaborative dynamic reasoning can accurately
analyze each person’s motion by sharing observations from
neighboring robots and identify the unique people.

II. DISTRIBUTED COLLABORATIVE MAP FUSION

The objective of this abstract is to develop a framework
for collaborative mapping and reasoning that simultaneously
estimates the global map and the uniqueness of all detected
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Fig. 1. Robot environmental perception results of fusing thermal image
with 3D Lidar, static world and dynamic human are separated in the night
forest environment.

human. The system architecture is consisted of three mod-
ules: multimodal environmental perception, static environ-
mental mapping, and dynamic environmental reasoning.

A. Single Robot Level

In single robot level, each robot performs multimodal
environmental perception. The heterogeneous sensors carried
by each robot are calibrated and integrated. The object
detection & tracking algorithms [4] are executed to separate
the static point cloud and human stream in two parallel
processes, as shown in Figure 1. Then, each robot performs
static environmental SLAM given the input of filtered static
point cloud, while conducts human uniqueness reasoning
conditioned on the estimated single robot pose.

B. Multi-Robot Level

For multi-robot level, each robot communicate with neigh-
boring robots to share local 3D maps, human states and
unique role estimated by single robot. The multi-robot sys-
tems first perform collaborative static mapping, estimating
relative position between all robots and global 3D map.
Then, the global uniqueness is estimated conditioned on
relative position between all robots, human states and single
robot unique roles. The objective is to estimate fused global
map M, set of relative transformation 7., and uniqueness
of human /; under a fully distributed network, given local
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Fig. 2. The schematic diagram of collaborative reasoning. The blue part
is the uniqueness reasoning on each robot, and the brown part is the
collaborative reasoning based on the observation and inference result from
every single robot.

Robot r receives the local maps m,(R’>, human states g;./
(R) '

and preliminary human uniqueness i.,” from all the nearby
robots R,. Then, the problem is factorized into collaborative
static mapping and collaborative dynamic reasoning. By
applying chain rule and conditional independent theory, (1)
can factorized and simplified into (2).
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The principal advantage of the factorization comes as fol-
lows. Firstly, it benefits from utilizing Maximum a Posterior
(MAP) probability for robots relative transformation estima-
tion and global map estimation. Secondly, global uniqueness
human reasoning can be performed given the estimated
relative transformation of collaborative mapping, it can help
to improve the decision process of the system and reduce the
need for communication bandwidth.

III. EXPERIMENTAL RESULTS

As shown in Figure 3, the human-robot team operates
under a dense forest canopy, which is a fully dynamic and
unstructured 3D environment that contains trees, slopes and
moving people. The mission is to collaboratively map out
the full 3D environment and simultaneously estimate the
uniqueness of people. The two robots started moving from
a nearby place, while robot 1 (red trajectory) turned left and
went uphill and robot 2 (orange trajectory) turned right and
went downhill. People moved in the environment in different
directions and speeds.

The overall results of collaborative mapping and reasoning
is provided. It can be found from the satellite image that it
is a dense rainforest, and it is difficult to see the ground
from the top view. Real images also verify the complexity
of the environment from a human perspective. Experiment
is carried out immediately after the rainstorm, and the robot
is operated in muddy terrain. The middle image shows the
final merged global map at the end of the operation. The
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Fig. 3. The result of the simultaneous collaborative mapping and reasoning
in a daytime rainforest environment. Left: an overview of the environment
setting and robot perception result. Middle: collaboratively generated 3D
global map. Right: collaborative reasoning results in three scenarios.

global map reconstructs the entire unstructured environment
in detail with high precision. It is worth noting that while
dynamic objects are moving around in the environment,
we are still able to build an accurate 3D static map based
on multimodal context-aware frameworks. The foundation
behind the global map is to accurately estimate the relative
position between the robots, which is also the basis for
collaborative reasoning. The left three images show the
collaborative dynamic reasoning results on the global map.
The dots and arrows show the 3D position and motion of
each person. The red dot denotes the recognized unique
person from comprehensive human motion analysis.

IV. CONCLUSION

This abstract presents a method for simultaneous col-
laborative mapping and reasoning in GPS-denied and dy-
namic unstructured environments. We have designed a new
framework to provide theoretical formulas and system im-
plementations for collaborative static mapping and dynamic
reasoning. Explicitly environmental mapping is addressed
by developing a collaborative static mapping process. The
robot judges each person’s uniqueness by analyzing each
person’s movements and comparing them with each other. In
summary, the proposed collaboration system provides a new
perspective for sensing and adapting to dynamic unstructured
environments, which compensates for the limitations of in-
dividual robot perception, mapping, and reasoning.
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