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I. INTRODUCTION

The study of one-to-many handover is motivated by the
scenario of (1) one autonomous robot serving many humans,
and (2) human supervising multiple low-autonomy robots to
serve their end users. The level of collaboration is about (1)
whether the end user will perceive the autonomous robot or
the entire human-robot teaming system to be collaborative
or not, and (2) how to design such system to behave as a
collaborative partner with all (or most) of the remote users.

Research in improving robot performance in handover
tasks focuses on inferring human intent and planning robot
motion such that it is efficient, intuitive, safe and comfortable
for the human partner. Robot efficiency in handover tasks
depends on the reaction time and accuracy of the robot
response. Often, observations from human-human handover
studies [1]-[3] are used to model expected human behaviour.
Human posture, arm length and gaze can be used to predict a
prior static estimate of the object transfer point [3], [4]. This
static estimate can then be updated based on the observed
human motion to promptly and accurately plan the robot
reach-to-grasp motion [4].

Although predictive control leads to efficient and func-
tional handovers, planning legible motions that clearly indi-
cate the robot’s intent lead to a more fluent collaboration [5].
Characteristics of collaborative fluency, such as the subjec-
tive and objective fluency metrics, observer and participant
fluency perception, etc, help to evaluate the fluency of
human-robot handovers [6]. Apart from fluency, factors like
adaptability [7], compliance [8] and trust [9] also indicate
the level of collaboration of the human or robot partner.
For sequential tasks, adaptability can be measured based on
the probability with which one partner adapts to the other
partner’s reward function [7]. Inferring the robot’s reward
function in a task also helps to build a human partner’s trust
in the robot’s capabilities [10].

Although handovers have been studied for face-to-face,
dynamic, repetitive and sequential task scenarios, the ma-
jority of the research deals with one-to-one handover tasks.
A non-sequential one-to-many handover task would involve
the additional problem of scheduling the robot’s actions to
cater to multiple users. In the case of mixed human-robot
teams where a human leader has to allocate tasks to a
human assistant and a robotic co-leader [11], task scheduling
was done by minimizing the maximum amount of work
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assigned to an agent. Constraints for this problem considered
lower bounds on time, number of tasks assigned to each
agent and other temporal and spatial constraints of the task.
However, the study only focused on how human satisfaction
was affected by the level of robot autonomy and not the level
of collaboration. In our proposed study, we aim to evaluate
the aspects of a robot’s performance that affect a human
partner’s perception of the robot’s level of collaboration.

II. ONE-TO-ONE OBJECT HANDOVER

To determine the factors that indicate the level of collabo-
ration of a partner in an object handover task, we conducted
a one-to-one human-human handover experiment.
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Fig. 1. Experiment setup for Pilot Study

As shown in Fig. 1, the subjects A and B were asked to
stand on opposite sides of a table. 6 objects with different
affordances were placed in each of the bins on either side of
the table. The subjects were asked to collaborate in moving
all the red objects to the red bin and yellow objects to the
yellow bin. They were only allowed to handle one object at
a time. A trial was considered complete when all the objects
were in their respective bins.

The study comprised of 2 trials. In one trial, Subject B was
asked to be Collaborative i.e. be helpful to their partner. In
the other trial, Subject B was asked to be Non-Collaborative
i.e. offer minimum help to their partner. Subject A was
provided with no specific instruction and was unaware of
Subject B’s instruction. Subject A’s behaviour was assumed
to be neutral or collaborative. The order of collaborative and
non-collaborative trials for all subjects was decided based on
balanced latin square.

Subject B’s movements were tracked through a Kinect sen-
sor using the NI Mate motion capture system. The skeleton
data was used to calculate the object transfer point and the
orientation of the subject’s body and head. A video camera
on the side of the table captured the task scene. The video
data was used used to record verbal communication, object
affordance, the timing of actions and total time. At the end
of the study both the subjects answered a questionnaire:



o Do you think your partner was collaborative? Explain.
(Only Subject A)

o What did you do to act collaborative/non-collaborative?
(Only Subject B)

e Who took the charge? Explain.

o Were there any conflicts? If yes, how were they solved?
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Fig. 2. Object transfer point changes based on level of collaboration

A pilot study of the one-to-one handover experiment was
performed with 6 pairs of subjects. Affordance of the objects
had no impact on collaboration intent. As the objects did not
have a function in the task, affordance was not considered
by Subject B. But the object transfer point during the
non-collaborative trial was lower and closer to the yellow
bin than in the collaborative trial. Attention of Subject B
was modelled using the body and head orientation. During
the collaborative trial Subject B paid attention to all actions
initiated by Subject A. While in the non-collaborative trial
Subject B gave and received objects without acknowledging
Subject A’s intended actions. The average reaction time
of Subject B was consistent for all actions in the collab-
orative trial. While the average reaction time during the
non-collaborative trial was slower or inconsistent. Conflicts
occurred when both subjects tried to handover an object at
the same time. Resolution of conflicts was much faster in
the collaborative trial than the non-collaborative trial.

IV. ONE-TO-MANY OBJECT HANDOVER

The significant variables inferred from the one-to-one
handover experiment will be used to model and contrast
how the level of collaboration is estimated in a one-to-
many handover scenario. We utilize the results of the pilot
study to design a similar one-to-many handover experiment
(Fig. 3). Here the affordances of objects will be enforced by
defining how the objects should be placed in the bin. Along
with the factors mentioned in the one-to-one scenario, task
scheduling will now affect how the level of collaboration of
subject B is perceived by Subjects Al, A2, and A3.

The human subjects can initiate a Give action where they
would offer an object to the robotic agent or a Demand action
where they would raise their arm to demand an object from
the robotic agent. The robot can respond with a Take or
Give action. The robot can also initiate a Demand action.
The robot requires ¢; time to execute the Take action and t,
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Experiment setup for one-to-many handover study

Fig. 3.

time to execute the Give action. The task scheduling problem
will select actions based on the following cost function:

3
min Z(CGi * by, + Cp, * tw,) + tiotal
i=1
Where, t,,, is the waiting period for subject i, Cq, * tw;
is the cost associated with the Give action and Cp, * tw;
is the cost associated with the Demand action. t;,:q; 1S the
time required to complete the total task. The problem can be
formulated with additional temporal and spatial constraints.
We propose a one-to-many human-human user study to
learn the cost factors Cg and Cp and the weights for
the one-to-one factors: object transfer point, attention,
verbal communication and conflict resolution that lead to
a collaborative behaviour. This study will help to analyze
the low-level and high-level factors that affect how a service
robot will be perceived by its users.
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