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Abstract— A key decision in human-swarm teaming is di-
viding a swarm into sub-swarms to address separate issues
or to accomplish a task over a large area. As the swarms
grow in complexity, the cognitive load needed to manually
divide the swarm grows in magnitude. We propose a new
multimodal graph embedding method to construct a unified
representation that fuses multiple information modalities to
describe and divide a swarm. Our approach takes into account
diverse relationships in the swarm, such as spatial relationships,
communication capabilities, and hierarchical structures. The
relationship modalities are encoded as directed graphs which
are embedded into a unified representation for each swarm
agent. Experimental results show that our method successfully
decides correct sub-swarms based on swarms’ multifaceted
internal structures, and outperforms baseline methods.

I. INTRODUCTION

Because of their robustness and flexibility, robotic swarms
are being increasingly researched and used in large-scale
applications, such as search and rescue and area exploration
[1]. However, as the number of robots in a swarm increases,
the swarms become cognitively more difficult for humans to
understand and command [2]. At scale, the complexities of
internal relationships become difficult for human operators
to conceptualize. Figure 1 provides an illustration of how
robots can appear organized in physical space, but also con-
tain hierarchical relationships or communication capabilities
within the swarm that are more difficult to perceive. These
relationships are further complicated by swarm member
interactions with obstacles and the surrounding environment.
When combined, these challenges result in swarm states that
are both difficult for a human operator to accurately perceive
and for a system to display.

To address these problems, we propose a novel multimodal
graph embedding approach to encode diverse relationships
of robots in a swarm as graphs and integrate the multiple
graphs into a unified representation that is applied to divide
a swarm into sub-swarms, without the intervention of a
human operator. We model each internal relationship of the
robots in a swarm using a directed graph as an information
modality. Given a set of member relationships, we construct
multiple graphs that are applied as the input to our approach.
Then, we propose a new multimodal Katz index to integrate
multiple graphs of robot relationships and embed them into
a unified representation for each robot in a swarm. Then, the
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Fig. 1. A motivating example of automatic swarm division and our solution
based on multimodal graph embedding. In real-world swarm systems, robot
members in a swarm typically have a variety of relationships, such as spatial
relationships, communication connectivity, and organization hierarchy. This
complexity makes swarm division a difficult or impossible problem for a
human operator. Our proposed multimodal graph embedding approach can
integrate multiple relationship graphs and identify effective sub-swarms.

constructed representation is used to identify subdivisions of
a swarm based upon unsupervised learning. Our multimodal
graph-embedded swarm division is capable of fusing diverse
swarm member relationships and identifying divisions with-
out requiring explicit knowledge of tasks.

II. APPROACH

In real-world swarm deployment, members within a swarm
typically have a multiple various relationships (e.g., spatial
relationships, communication connectivity, and organization
hierarchy). We encode the swarm with M graphs, where
Gm is the graph describing the m-th relationship of swarm
members. Each graph Gm is described by an adjacency
matrix Am ∈ RN×N , where each element aij is the weight
of the edge connecting vertex vi to vertex vj .

To achieve our objective of encoding multiple graphs
and embedding them into a single vector representation, we
propose a new multimodal formulation of the Katz index [3]
that is able to take multiple graphs as the input modalities and
form a single similarity matrix S ∈ RN×N that integrates
the information of all graphs. To do this, we introduce a
weight wm for each Am describing the importance of the
relationship encoded by Gm, where

∑M
m=1 wm = 1. We then

construct the multimodal similarity matrix S that embeds
information of all graphs as follows:

S =

(
I− α

M∑
m=1

wmAm

)−1

− I (1)

In order to create a lower-dimensional representation than
S, which is necessary when embedding big graphs of a large-
scale swarm, we perform Singular Value Decomposition:
S = UΣVT . To further reduce the dimensionality of the
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Fig. 2. Qualitative results of swarm division. Figure 2(a) displays the squad column, with colored bounding boxes identifying the correct division into
three clusters, consisting of the first team, the squad leader, and the second team [4]. Figure 2(b) displays the platoon column, displayed with the correct
division into five clusters, consisting of the first squad, the platoon leader, the second squad, the platoon sergeant, and the third squad. Figure 2(c) displays
a simulated swarm of 50 agents, divided into five sub-swarms.

representation, given a desired dimensionality D, we propose
to use the first K left singular vectors and the first K right
singular vectors to approximate S, where K = D/2. This
results in U ∈ RN×K and V ∈ RN×K .

Finally, we construct the final representation matrix X ∈
RN×D for all N swarm members by concatenation: X =
(U,V). where each row xn ∈ R1×D of X represents the
n-th agent of the swarm. Given this final representation, we
apply unsupervised clustering to separate the swarm into sub-
swarms.

III. EXPERIMENTS

We evaluated our approach on simulated robotic swarms
in the Webots simulator, using expert-defined teams with
known divisions and large-scale simulated swarms with-
out ground truth. Each swarm was defined with graphs
representing spatial positions, communication connectivity,
and a set hierarchy. For quantitative evaluation, we present
the clustering accuracy when dividing the expert-defined
teams and utilize silhouette scores [5] for all sub-swarm
divisions. Silhouette scores rate the quality of a clustering,
with values closer to 1 being better and values closer to -
1 being worse. To validate the superior performance of our
approach, we compare it with baseline methods, including
graph embedding approaches such as High-Order Proximity
preserved Embedding (HOPE) [6].

We first evaluate our approach on the expert-defined team
formations known as the platoon column, platoon wedge, and
platoon vee and the squad column, squad file, and squad line,
based on the field operations teaming protocol in [4]. This
protocol defines correct sub-divisions for these formations.
Platoon formations incorporate three squads and two separate
leadership agents. Squad formations incorporate two teams
and one separate leadership agent. Figures 2(a) and 2(b)
displays the squad column and platoon column in the Webots
simulator, with correct sub-divisions labeled.

TABLE I
COMPARISON OF ACCURACY AND SILHOUETTE SCORES

Method Accuracy Avg. Silhouette Score
HOPE [6] (Spatial) 85.62% 0.455

HOPE (Connectivity) 50.33% 0.018
HOPE (Hierarchy) 39.22% 0.167

Our Approach 96.73% 0.680

Out of a possible 306 agents in the six different forma-
tions, our approach clusters 96.73% of the agents correctly.

The best of the baseline methods is the HOPE embedding of
the spatial relationships, clustering only 85.62% of agents
correctly, showing that our method outperforms existing
graph embedding methods. Using the silhouette score metric,
our approach performs best with an average score of 0.680.
Again, the highest existing method is the HOPE embedding
of the spatial relationships, scoring 0.455. We note that our
approach achieves its best results on the platoon formations,
which contain over three times as many agents as the squad
formations, suggesting that our approach’s performance will
extend to larger swarms. Table I shows that a linear relation
exists between accuracy and silhouette score, validating the
silhouette score as a metric for dividing large-scale simulated
swarms without ground truth divisions.

To evaluate the effectiveness of our approach on a larger
scale, we simulated larger multi-robot swarms consisting of
10 to 50 robots. These large-scale swarms have the same
relationship modalities as the expert-defined teams, based
on their generated positions. Figure 2(c) displays a simulated
swarm of 50 agents in Webots. We repeatedly generated these
large multi-robot systems evaluating each combination of
swarm size and number of clusters 100 times. Our approach
achieves the highest silhouette score of 0.676, beating the top
baseline score of 0.427. This is consistent with our score
of 0.680 on the expert-defined teams, where our approach
achieved the highest clustering accuracy, suggesting that
our identified sub-divisions of large-scale simulated swarms
outperform the divisions identified by other methods and can
identify useful swarm divisions without the intervention of
a human operator.
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