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Abstract— Human-robot teaming is crucial to the success of
many real-world applications, from search and rescue to home
assistance. A robot must be capable of quickly and accurately
recognizing activities of its human teammate. In this paper, we
develop a new approach to human activity recognition, through
simultaneously learning from observations of the teammate and
of the attributes of objects involved in the activity. We propose
to formulate activity recognition as a joint optimization problem
that adopts structured sparsity to identify discriminative body
parts and object attributes, and utilizes a regression-like loss
function to integrate teammate and object cues to perform real-
time activity recognition. To assess our approach, we perform
preliminary experiments on a physical robot in a practical home
assistance scenario.

I. INTRODUCTION

Effective human-robot teaming is critical for the success of
applications that require humans and robots to work together
[1]. Human-robot teaming often require that robots be able
to understand activities of human teammates with no explicit
commands, with the objective to offer proactive assistance,
without cognitively burdening human teammates [2]. Human
activity recognition in the real world is a difficult problem,
complicated by variations in human appearance and motions,
and by technical challenges, such as changes in illumination
or occlusions. Given the challenges, it is critical to obtain as
much information from the scene as possible. This includes
the human, as poses and movements are indicative of human
activities, as well as further context from the objects in the
scene or objects that the human is interacting with, which
can provide distinctions between activities (e.g., Figure 1).

In this workshop paper, we introduce a new approach to
human activity recognition based on learning from teammate
features and object attributes. We formulate human activity
recognition as a regression-like optimization problem, and
design structured norms as regularization terms to promote
sparsity and identify both discriminative skeletal joints and
object attributes. This formulation is inspired by the fact that
many human activities rely solely on a subset of joints (e.g.,
a waving activity uses only joints in the arm, not in the legs),
or can be identified based upon context of objects in the scene
(e.g., reading a newspaper or typing on a laptop at a table
appear very similar if only the human pose is considered).

II. APPROACH

The proposed approach begins with a set of data instances
X = {T,O}, consisting of paired observations of a human
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Fig. 1. A motivating example of integrating observations of the teammate
and of the objects involved in the activity to understand human behaviors. By
observing the human teammate and objects to recognize human activities, an
autonomous robot has the potential to interact proactively without requiring
direct commands from the human teammate.

teammate and observations of objects. T ∈ RdT×N denotes
the matrix of observations of the teammate. Observations of
the objects are encoded in the matrix O ∈ RdO×N . Then, our
objective is to assign each unknown data instance in X to one
of C behavior categories, based on these observations of the
teammate and objects in the scene. Behavior category labels
for each data instance are denoted in the category indicator
matrix Y = [y1; . . . ;yN ] ∈ RN×C .

We formulate human activity recognition based upon both
skeletal observations and object observations as a regression-
like optimization problem:

min
W,U
‖T>W +O>U−Y‖2F + λ1‖W‖S + λ2‖U‖A (1)

where W = [w1, . . . ,wC ] ∈ RdT×C denotes a weight ma-
trix indicating the importance of T to the behavior category
labels, U = [u1, . . . ,uC ] ∈ RdO×C is a weight matrix doing
the same for O, and λ1,2 are trade-off hyperparameters. wc ∈
RdT is the weights of joints with respect to c-th category,
with subsections wj

c ∈ Rdj
T representing the weights of the

j-th joint to the c-th category. Similarly, uc ∈ RdO represents
weights of object attributes with respect to c-th category, with
subsections uom

c ∈ Rdm
O representing weights of the m-th

attribute of the o-th object to the c-th category.
To identify discriminative body joints, we design a skeletal

norm on the joint observation weight matrix W:

‖W‖S =

C∑
c=1

J∑
j=1

‖wj
c‖2 (2)

This norm enforces the `2-norm within a joint feature and the
`1-norm between joints in order to force sparsity and weight
only discriminative joints. In addition, we introduce a new



(a) TurtleBot Platform (b) Scenario Setup

Fig. 2. The setup used to evaluate the home assistance scenario. Figure
2(a) shows the Turtlebot platform. Figure 2(b) illustrates the robot observing
the human as an activity is performed.

attribute norm to learn the importance of object attributes of
multiple objects in a scene, which is defined as:

‖U‖A =

C∑
c=1

O∑
o=1

M∑
m=1

‖uom
c ‖2 (3)

The attribute norm selects discriminative attribute modalities
for each object. Each object present has multiple attributes,
and the `2-norm is applied to enforce similar weights within
an attribute modality. The `1-norm is applied between these
attribute modalities to enforce sparsity and force the identi-
fication of discriminative attributes.

III. EXPERIMENTAL RESULTS

We implemented our approach on a physical robot in order
to validate its performance in a real-world home assistance
scenario. We deployed our approach on a Turtlebot robot
participating in a home assistance scenario, as depicted in
Figure 2. The Turtlebot has an ASUS Xtion Pro color-depth
sensor onboard to extract 3D skeleton data and a lightweight
netbook for processing.

In this scenario, five activities were defined, including
drinking wine, storing food, storing dishes, pouring wine, and
eating. Each activity was performed 20 times. In order to test
the effectiveness of our approach in learning simultaneously
from observations of the teammate and observations of
the objects, these activities were defined to involve similar
objects and human poses. For example, both drinking wine
and pouring wine involve a glass and a bottle, but drinking
wine is performed while sitting down and pouring wine
is performed while standing up. Similarly, both eating and
drinking wine are behaviors performed by a sitting human
teammate, but involve different objects (respectively, a bowl
and a spoon versus a wine glass and a bottle).

The quantitative experimental results are presented in Ta-
ble I. We can observe that the proposed approach achieves an
overall accuracy of 98.33% in this home assistance scenario.
Comparison with baseline real-time approaches is also listed
in Table I, which shows that our approach is superior to two
standard real-time machine learning methods as baselines.
With only the skeletal norm or only the attribute norm, the

TABLE I
ACCURACY OBTAINED BY OUR APPROACH IN THE HOME ASSISTANCE

SCENARIO AND COMPARISON TO BASELINE REAL-TIME APPROACHES.

Approach Accuracy
Support Vector Machine 51.67%

Decision Forest 91.67%
Our Approach (only skeletal norm) 95.00%
Our Approach (only attribute norm) 96.67%

Our Approach 98.33%

proposed approach achieves good accuracy but less than with
the full formulation that uses both norms.

In this set of experiments, we also tested our approach
with a different set of attributes in order to evaluate its
ability to identify discriminative objects. In this setup, each
scene has five attribute modalities, where each modality is
the probability that an object category appeared in that scene.
The 5 object categories used are the wine bottle, glass, fridge,
bowl, and spoon. The probabilities that an object appeared
in a scene were obtained from the YOLO object detection,
which uses a pre-trained neural network to identify common
household objects. For example, for the activity of drinking
wine, the probability of a bottle or glass appearing would be
close to 1, and close to 0 for the remaining objects.

(a) Drinking Wine (b) Storing Food

Fig. 3. Figure 3(a) illustrates the weights for the drinking wine activity,
where the glass and bottle are very important. Figure 3(b) shows the weights
for the activity of storing food, where the fridge is the most relevant object.

Using this setup, our approach is able to recognize 96.67%
of home activities correctly. Additionally, this setup allowed
our approach to identify discriminative objects, as each col-
umn of the U matrix contained only five values, each relating
one object to that column’s associated human activity. Figure
3 displays two sample columns from the U weight matrix.
In Figure 3(a), we see that the bottle and glass are the only
objects receiving weights, as these are very indicative of the
drinking wine activity. Similarly in Figure 3(b), we see that
the fridge receives nearly 90% of the total column weight,
identifying it as being very indicative to recognize the storing
food activity.
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