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I. INTRODUCTION

Dynamic information gathering algorithms typically lever-
age well-defined models of target dynamics, robot plat-
form motion, and sensor observations to solve challenging
combined optimal control and estimation problems. While
exact solutions are intractable, approximate algorithms for
autonomous data fusion and decision making under un-
certainty can be very brittle. This problem is exacerbated
in unknown environments, where the demands of online
localization, mapping, perception, and planning lead to even
greater computing bottlenecks, uncertainties and risks.

To mitigate these issues, human operators and teammates
can act as ‘sensors’ that contribute valuable information
beyond the reach of autonomous robots. For instance, vehicle
operators in search and tracking missions can provide ‘soft
data’ to narrow down possible survivor locations using
semantic natural language observations (e.g. ‘Nothing is
around the lake’; ‘Something is moving towards the fence’),
or provide estimates of physical quantities (e.g. masses/sizes
or location of obstacles, distances from landmarks) to help
autonomous vehicles better judge and understand search
areas – thus improving online decision making. But how can
autonomous reasoning actively and opportunistically engage
human sensing in unknown environments?

This paper describes progress toward a framework for in-
telligent human-autonomy interaction that not only leverages
combined robot-human sensing, but is also tightly integrated
with dynamic platform decision making and planning. Our
framework uses Bayesian data fusion to exploit human sen-
sors and autonomous robotic sensor platforms in a ‘plug and
play’ manner; this idea that has gained increased attention
in various contexts over the last decade [1], [2], [3], [4], [5],
[6], [7]. However, until now, these developments have only
focused on structured and known environments, and have
largely ignored coupling to planning/control problems. We
combine our recent work on Bayesian semantic robot-human
sensor data fusion in structured environments [8], [9], [10],
[11] with concepts from optimal active sensing and online
planning under uncertainty, in order to develop new methods
for interactive multi-level human-robot sensing of dynamic
states in unknown environments.
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II. PROPOSED TECHNICAL APPROACH

For concreteness, we focus on dynamic target search
and localization applications with human-robot teams, al-
though the principles behind our approach are applicable
to other problem domains. Previous work [11], [12], [13]
focused on offline approximations of optimal collaborative
human-robot information gathering policies in continuous
state space target search problems – assuming given models
for observations, rewards, and state transitions. In domains
involving human interaction, these offline policies assumed
a priori knowledge of environments and target behaviors
in order to ground the meaning of semantic human sensor
inputs (defined according to a structured natural language
dictionary). These assumptions fail in unstructured and dy-
namic environments, as environment knowledge and target
behaviors can change rapidly during policy execution.

We address these issues via online policy generation, so
that a robot can plan under uncertainty using its most up
to date understanding of the world. This allows the robot
to tailor its actions both to improve its knowledge of the
underlying models being used and achieve its mission objec-
tives. Specifically, building on work in [11], [13], we employ
online approximations for solving continuous state POMDPs
to formulate joint action-query policies. The policies tell
the robot how to respond to uncertainty in target location
and other relevant planning variables. In this way, the robot
simultaneously makes optimal decisions about how to sense
and search the environment and about which semantic natural
language questions (from a pre-defined dictionary) it should
ask human sensors. This allows the robot to prioritize and
‘pull’ useful information from human sensors to help localize
targets and perceive the unknown environment during the
search mission. Additionally, the policy can direct the human
to provide responses that refine the robot’s probabilistic state
transition, reward, and observation models. As in our previ-
ous work, human responses can be provided via structured
natural language [10], [14] or as direct ‘yes/no’ answers to
binary semantic queries [12], [13]. However, in unknown
environments, the set of groundings and semantic references
are likely to be highly limited in the initial phase of the
mission. Thus, building on [9], human sensor data can be
more conveniently provided via free-form semantic sketches
on dynamically updated metric maps.

A. Illustrative Conceptual Example

Consider the scenario in Figure 1, in which a soldier and
aerial robot team is out in a field searching for a moving
target. While the extent of the space is known, and the



Fig. 1: Sequence of environment structure and target state
belief updates following semantic human sensor inputs.

locations of the soldier and robot are known via GPS, the
locations of obstacles and landmarks are not known a priori.
The robot maintains a continuous belief p(s) of the target’s
state s in the environment, modeled as a Gaussian Mixture
(GM) pdf, with component weights, means, and covariances,

p(s) =

N∑
i=1

wiNs(µi,Σi).

The robot can use data from its onboard visual sensor to
update and act on p(s) in order to make decisions about how
to localize and capture the target. Optimal search strategies
can be found by approximating continuous POMDP policies
via GM-based point-based value iteration (PBVI) [11], [15].

In traditional POMDP-based planning, observations
change only an agent’s belief about the state of the world
(e.g. target location). However, observations from a human
sensor need not be limited to state dependent observations;
humans can also provide information about the structure
of the environment around them. These structural observa-
tions change the models the robot uses for planning, thus
changing the way the belief is changed. Structural semantic
observations can be quite rich with information pertaining
to state transition probabilities, observations, and reward
functions (possibly all at once). For example, by specifying
the location and name/type of an obstacle, human input can
dynamically alter the transition function for a ground robot
by blocking off a part of the search space that can’t be safely
entered. At the same time, the human input can create a
new grounding reference for future semantic observations,
as well as alter reward functions in the area of the object to
avoid obstacle collisions. This allows the human to constrain
and add structure to otherwise unknown and unstructured
environments. More generally, human sensor data can be
used to correct, add, or remove information about objects
that are perceived and mapped by the robot itself.

In this example, the robot first receives semantic structural
information about the environment (2D location and extent
of a cluster of trees) from the soldier using a sketch interface,
similar to the one in [9]. For simplicity, the sketch interface
considered here (2nd column of Fig. 1) is adapted such
that structural inputs from the human are treated as perfect
observations, and the sketches are not gridded up over the
search space. The trees are important to avoid for the flying

robot, and thus can be encoded as obstacles in a configuration
space map for motion planning by creating regions of high
negative reward. But the trees also can serve as an anchor for
semantic observations (and queries) in the future. Using the
synthesis technique developed in [10], the sketch is converted
into a softmax model P (o = j|s) (3rd column of Fig. 1),
with parameters wj , bj for semantic labels j,

P (o = j|s) =
ew

T
j s+bj∑m

c=1 e
wT

c s+bc

This model encodes the likelihood for ‘allowable’ human
observations, as determined by the type of object labeled by
the human and the mission context. In this example, ‘trees’
must be pre-defined in a semantic dictionary, such that the
robot understands that a human sensor can use this landmark
to refer to the relative object positions via cardinal directions.

The robot then receives noisy semantic target state obser-
vation o from the soldier, indicating target position relative
to the trees. Based on the previous structure observation, the
robot translates “southwest of the trees” into a softmax label
class. The target state pdf is then updated via Bayes’ Rule,
by approximating the product of the GM prior and softmax
likelihood to get a GM posterior [8],

p(s|o) = P (o|s)p(s)/P (o) ≈
Ñ∑
i=1

w̃iNs(µ̃i, Σ̃i)

To fully leverage the new human-provided structural and
target state data, the robot must be able to adapt its contin-
uous POMDP search policy top optimize decision making
given its new environment model, semantic human sensor
model, and target beliefs. As such, the policy should consider
robot actions for planning to comprise both robot platform
movements and queries to semantic human sensors. That is,
the policy should actively suggest semantic observations for
the human to provide about the target state and/or environ-
ment that aid robot motion planning, as well as consider
robot motions that improve human-robot sensing (4th column
of Fig. 1). This concept was recently explored for known
search environments via offline PBVI-based CPOMDP pol-
icy approximations [13]; we are working to leverage in-
sights from this offline approach (for speeding up GM-
based PBVI with semantic softmax observations) for online
policy approximation algorithms using Monte Carlo Tree
Search methods. Partially Observable Monte Carlo Planning
(POMCP) [16] is particularly suitable since it requires only
a“black-box” model of the problem (to simulate dynamics,
observations, and rewards) that can be dynamically updated
with new structural information from the human sensor.

In the full paper, we will demonstrate a proof-of-concept
dynamic policy implementation for a mock version of the
Fig. 1 scenario. Open issues to be explored and discussed
include: (i) strategies for framing human sensor queries
(especially accounting for cognitive factors and instances
where human input can potentially lead to more uncer-
tainty/harm than good); (ii) rigorously accounting for am-
biguous/incorrect semantic observations; and (iii) reasoning
about how sketches should trigger CPOMDP model updates.
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