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Abstract— We describe a system that utilizes rapid learning
and active perception to plan a path for a ground robot
through unknown terrain, using observations from a flying
robot. In search and rescue missions, the time from arrival at
the disaster site to the delivery of aid is critically important, so
our approach focuses on minimizing this response time. Due
to the unknown environments present in these scenarios, we
propose a terrain classifier that can be trained and deployed
quickly, based on data collected on the spot. We demonstrate
that we can launch our aerial robot, gather data, train a
classifier, and begin building a terrain map after only 60
seconds of flight. Our system also utilizes active exploration
by the flying robot, where it maps the terrain and elevation in
the environment in order to explicitly minimize the combined
aerial exploration and ground robot transit time. The terrain
class from our rapid classifier and the elevation estimates
in the map are used to generate feasible and efficient paths
for the ground robot. Our overall system is capable of being
deployed rapidly in a previously unknown environment, with
no prior knowledge or map.

SUPPLEMENTARY MATERIAL

An accompanying video of the system is available at: https:
//youtu.be/4cxDHPIEUx4.

I. INTRODUCTION

In disaster environments or search and rescue scenarios,
time is a critical factor in the success of the first responders.
One challenge is that the environment may have been al-
tered by the disaster (e.g., an earthquake or a mudslide), po-
tentially invalidating any prior maps. Consequently, robotic
systems that can benefit first responders must be capable
of gathering and using data on demand, without reliance
on a priori maps.

The approach proposed here is motivated by the need
to deliver a fast unmanned response in a previously unex-
plored environment using a collaborative robot team. Our
system operates in three stages, shown in Fig. 1: an opera-
tor initially flies the MAV searching for a goal location for
the ground robot (e.g. a victim) while collecting training
data for the terrain classes present in the environment [1];
the MAV then explores the environment autonomously
while building a map with elevation and terrain classes until
it has found a feasible path for the ground robot; finally the
ground robot executes the path to the goal. To minimize the
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(a) Terrain Map

(b) System Overview

Fig. 1: Overview of the proposed system. Fig. 1a shows a diagram
illustrating our intended terrain map output. It includes the elevation
information, terrain classification, and the path found for the ground robot.
Fig. 1b shows the workflow of the collaborative team.

overall response time from system deployment to delivery
of aid, the exploration phase seeks to minimize both the
estimated travel time for the ground vehicle and the time
required to explore the map from above [2]. This allows
us to adapt our classification to the terrain that is present
in the search and rescue environment, without relying on
a priori maps or classifiers.

II. APPROACH

Our robot team consists of a lightweight MAV and an
all-terrain ground vehicle that can climb moderate grades
and traverse small obstacles. Our MAV [3] is equipped
with a downward-looking camera, and flies in autonomous
and vision-assisted manual flight modes using the visual
odometry pipeline SVO [4]. The images from this camera
are additionally used for terrain classification, and for
elevation mapping using the keyframe-based monocular
dense reconstruction pipeline REMODE [5].

Our terrain map is a finite region of the ground surface,
discretized into a 2D grid of uniformly sized cells. Our
software interface allows the user to select a rectangular
region of an image and label it as a terrain class, which is
then associated to a region of the map due to the known
pose of the MAV. All patches that subsequently project
to the labeled cells are collected together as training data.
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(a) Overview (goal in red) (b) Initial Classification (c) Elevation along path

Fig. 2: Driveway Experiment: While a direct path would be shorter, the chosen path (in red) would have lower response time due to the speed of the
ground robot on different terrains. The terrain classes are concrete (yellow), pavement (gray), grass (green), and water (blue). Elevation mapping is only
performed along the path for the ground robot, as visible in (c).

(a) Overview (goal in red) (b) Initial Classification (c) Final Result

Fig. 3: Canyon Experiment: The ground robot cannot cross the water. Our system finds a feasible path for the ground robot that stays on the grass. The
terrain classes are concrete (yellow), pavement (gray), grass (green), and water (blue). The path is shown in red in (b) and (c). Elevation mapping is only
performed along the path for the ground robot, as visible in (c).

After gathering training patches for the terrain classes, we
train a feature-based classifier and apply it to randomly
sampled patches from the image stream to classify the map
cells that they project to.

We discretize the map into potential waypoints for
the MAV to visit for 3D reconstruction, so the map is
decomposed into a non-overlapping grid of patches. The
problem of efficiently finding a feasible path for a ground
robot is one of minimizing both the path traversal time, and
the number of waypoints visited (and therefore the MAV
flight time). We use both the estimated terrain class and
elevation to determine traversable paths in the map, and
estimate their costs in terms of response time. We propose
an exploration strategy that utilizes a search over candidate
paths in order to explicitly minimize the total response time
of the system, not just the path cost.

III. EXPERIMENTS

We successfully tested our system in two outdoor sce-
narios, to demonstrate the main capabilities of our sys-
tem and verify that our path planner avoids untraversable
terrain classes and handles significant elevation changes.
We followed the procedure in Sec. II for both datasets,
and were able to train the classifier in 60.44 seconds and
60.12 seconds, respectively. We then proceeded to survey
the environment as we would in a mission scenario, and
classify patches sampled from the image stream, while
accumulating terrain class probability estimates in the map

cells to which they project.
The first scenario (Fig. 2a) demonstrated the system’s

capability to distinguish different terrains: a straight line
path through the grass might seem faster (and is feasible
for the ground robot), it is better to stay on concrete since
the ground robot can drive twice as fast on a hard surface.
When driving the path with the ground robot, we found that
the path on concrete was in fact 50% faster than the straight
path over grass. The second scenario (Fig. 3a) included
steep terrain and water, which cannot be traversed by the
ground robot. The terrain classifier safely distinguished
pavement, grass, concrete, and water, leading to a feasible
path for the ground robot (Fig. 3b). The elevation mapper
ensured that the path remained in regions that were flat
enough for the ground robot to traverse (Fig. 3c), and we
could successfully follow it with the ground robot.
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