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Abstract— Fusion of local 3D maps generated by individual
robots to a globally consistent 3D map is a key challenge
in multi-robot missions. Online collaborative mapping has
mainly been addressed for robots equipped with cameras or
2D LiDARs. However, in unstructured and ill-light forest envi-
ronment, 3D Lidars provides more accurate representation. In
this paper, we propose a probabilistic framework to address the
integrated 3D map fusion problem, which can be factorized into
a product of relative transformation estimation and global map
estimation. Moreover, a distributed communication strategy
is employed to share map information among robots. The
proposed approach is evaluated in the forest environment,
which shows its utility in 3D map fusion for multi-robot
mapping missions.

I. INTRODUCTION

Utilizing a group of robots is much more robust and
efficient in complicated environments than a single robot
[1]. A key challenge is that each robot only has partial
information of the environment due to limited sensing ability.
Therefore, sharing and fusing data perceived by each robot
among all robots is necessary [2], which enables each robot
to make decisions and plan tasks from a holistic viewpoint.
In the challenging forest environment (see Fig. I), GPS,
communication bandwidth and computational power are lim-
ited. Hence, a compact 3D probabilistic map generated by
compressing raw sensor data is preferred. In general, map
fusion is composed of estimating the relative transformation
and map merging, which are usually tackled separately. The
majority of the existing approaches focus on estimating rela-
tive transformation and directly applying the transformation
to stitch the partial maps, and place less emphasis on how
to merge the maps.

The novelty of the work is the proposal of an online
probabilistic framework to address the integrated map fu-
sion problem, which is independent of sensor types and
SLAM algorithms. Moreover, a distributed communication
architecture is proposed and validated with real-time forest
experiment under limited communication bandwidth and
computational power.

II. DISTRIBUTED COLLABORATIVE MAP FUSION

A. Problem Formulation

Given a group of robots γ = {a,b,c, · · ·} (the number of
robots is r) in an environment, mi stands for the partial
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Fig. 1. The collaborative robots in forest environment

map generated by robot i ∈ γ . For robot i, the map fusion
problem is to estimate a set of relative transformation matri-
ces Ti,1:r (map matching) and generate the global map Mi
conditioned on all available partial maps (map merging),
where Ti,1:r = {Ti, j, j ∈ γ ∩ j 6= i} and Ti, j indicates the
relative transformation between partial maps mi,m j. The joint
distribution of Ti,1:r and Mi is formulated in Eq. (1):

p(Mi,Ti,1:r|m1:r). (1)

The formulation of the joint distribution enables us to
combine the map matching and map merging as an integrated
problem. To solve the joint estimation distribution, Eq. (1) is
factorized into a product of relative transformation posterior
and the global map posterior, where Eq.(1) is written as
p(Ti,1:r|m1:r) · p(Mi|Ti,1:r,m1:r).

B. Relative Transformation Estimation
Instead of simply considering Ti, j as a fixed unknown

parameter, Ti, j is modeled as a 6D multivariate Gaussian
distribution and solved by MAP estimation, where Ti, j ∼
(T̂MAP, T̂ΣMAP). Since the relative transformation Ti j is pair-
wise independent, the posterior of relative transformation
p(Ti,1:r|m1:r) can be factorized into a product of the posterior
of relative transformation between each pair in Eq. (2):

p(Ti,1:r|m1:r) =
r

∏
j=1

p(Ti, j|m1:r) =
r

∏
j=1

p(Ti, j|mi,m j) (2)

To solve the MAP estimation problem, we apply Bayes rule
to factorize Eq. (2) into Eq. (3), which is the product of
maximum likelihood estimation and prior estimation:

p(Ti, j|mi,m j) = p(mi|Ti, j,m j) · p(Ti, j), (3)

where term p(mi|Ti, j,m j) is a maximum likelihood estima-
tion (MLE) problem that aims to find the most likely relative
transformation Ti, j by matching the two partial maps mi, m j.
To establish voxel-wise correspondences for map merging, a
novel map registration algorithm called occupancy iterative
closest point(OICP) [2] is applied to solve MLE.



C. Map Merging

The process of combing the information of common
objects from partial maps to form a global enhanced map is
usually referred to map merging and is formulated in Eq. (4):

p(Mi|Ti,1:r,m1:r). (4)

The merging process should preserve all valuable informa-
tion of the partial maps while decreasing the uncertainty of
the fused map. Since the same object is observed in different
viewpoint with various robots, the voxels representing the
same object have different occupancy probabilities in sepa-
rated maps. Hence, it is vital to consider the dissimilarities
when fusing them into a global map. Here, the relative
transformation is evaluated based on Mahalanobis distance.
Then, a relative entropy filter based on Kullback-Leibler di-
vergence is applied to measure the difference between partial
maps, which integrates the measurements and decreases the
uncertainty of the global map.

D. Distributed Communication

In the challenging dense forest, the communication band-
width and computational resources are limited. Hence, it is
more feasible for the robots to communicate and transfer
data directly with each other rather than transmitting to
a central station. Instead of transferring the raw sensor
data which requires significant communication bandwidth,
we opt to transfer local partial maps which contain the
following information: 3D volumetric map in compressed
form (i.e. Octree), the time stamp of the map. When robot
i receives the partial maps mNi(t) from neighborhood robots
Ni(t), the probabilistic map fusion algorithm described above
will be performed to generate global map Mi. Each robot i
will preserve its own global map Mi, which increases the
robustness to unexpected robot breakdown.

III. EXPERIMENTAL RESULTS

Experiments conducted in the forest environment is pre-
sented in this section. Each robot was equipped with a
Velodyne VLP-16 Lidar for pose estimation [3] and 3D map
[4]. The resolution of the 3D occupancy grid map was set to
be 0.1m. The forest is in the university (NTU) with full 3D
environment that contains trees and slope (see Fig. 2c), while
the communication between robots was established by long
range wifi with limited bandwidth. As presented in Fig. 2, the
algorithm combines the map information from partial maps
to generate an enhanced and more consistent global map.

Here, we present the performance of matching accuracy
and merging result for the experiment. As a baseline for
comparison, standard ICP based map matching is imple-
mented. Our algorithm produces more accurate results in
the experiments in Tab.I. The entropy of the resultant maps
after applying different merging algorithm is summarized in
Tab. II, which shows the decreased uncertainty by applying
relative entropy filter. The experiments indicate that our map
fusion strategy is able to combine probabilities of individual
maps effectively to decrease the uncertainty.

(a) Partial map of robot 1 (b) Partial map of robot 2

(c) The forest environment (d) Fused global map

Fig. 2. The results of collaborative mapping in the forest. The map
produced by robot 1 is semi-structured, while robot 2 produces fully
unstructured forest map. The partial maps are fused into a consistent global
map.

TABLE I
QUANTITATIVE ANALYSIS OF MAP MATCHING ACCURACY

Translation Error (meter) Rotation Error (degree)
ICP Our Algorithm ICP Our Algorithm

Forest 2.1496 1.2710 4.0915 2.9587

TABLE II
AVERAGE ENTROPY OF FUSED MAP FOR DIFFERENT UPDATE RULE

Taking Average Our Algorithm
Forest 0.278 0.218

IV. CONCLUSION

This paper proposes a general distributed map fusion
framework, which combines map registration and merging
into an integrated problem. The accurate relative transfor-
mation is calculated by applying map matching algorithm.
The map merging is then achieved with a relative entropy
filter and decreases the uncertainty of the global map. Ex-
periments validates the proposed method produces enhanced
and consistent global 3D maps with high accuracy.
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