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Abstract— Uncertainties in flow models have to be explicitly
considered for effective path planning in marine environments.
In this paper, we present two methods to compute minimum

expected cost policies and paths over an uncertain flow model.
The first method based on a Markov Decision Process computes
a minimum expected cost policy while the second graph
search based method, computes a minimum expected cost path.
A transition probability model is developed to compute the
probability of transition from one state to another under a
given action. In addition, a method to compute the expected
cost of a path when it is executed in an uncertain flow field is
also presented. The two methods are used to compute minimum
energy paths in an ocean environment and the results are
analyzed in simulations.

I. INTRODUCTION

Scientific activities such as migration tracking, charac-
terizing the dynamics of plankton assemblages, measure-
ment of temperature profiles, and monitoring of harmful
algae blooms [1] are increasingly being automated using
autonomous marine vehicles (AMVs). In order to maximize
the utility of these resource constrained vehicles, energy
efficient motion strategies need to be developed.

The high inertia environment of the ocean which couples
the environmental dynamics to the marine vehicle dynamics,
presents a unique opportunity for vehicles to exploit the
surrounding flows for more efficient navigation. As such,
there is a substantial amount of recent work on determining
optimal energy paths in flow fields. Existing work include
graph search methods to plan time and energy optimal paths
in static [2, 3] and time-varying [4] flow fields. Alternatives
to graph search techniques include [5, 6] for computing
energy optimal paths in time-varying flows. Lolla et al.[7]
presented a level set expansion method to find time optimal
paths in time-varying flows. This was then extended by
Subramani et al.[8] to determine the energy optimal paths
from the set of time optimal paths obtained from the level
set method.

Most of the existing work in the literature on optimal
path planning in flow fields, assume that full knowledge
of the flow, both in space and time, is available for use
in the path planning process. This information could be in
the form of flow velocity forecasts or a valid flow velocity
model. Such forecasts could be obtained from sources such
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as the Regional Ocean Model System (ROMS) [9]. However,
forecasting ocean phenomena such as current velocities is a
complex process and is an active area of research in physical
oceanography. Forecasting these phenomena begins with a
suite of dynamic models based on theoretical principles, e.g.,
Navier-Stokes equations. Data from a multitude of sources
including satellite observations, high frequency (HF) radar
and ship based acoustic measurements, are used to initialize
these models and to provide boundary conditions. However,
the complexity of the underlying oceanic processes coupled
with our limited understanding of their dynamics gives rise to
uncertainty in these models. In addition, low spatio-temporal
sampling resolutions as well as limited accuracies in the
measurement devices themselves, further contribute to errors
in the data used to initialize the forecasting models. While
data assimilation techniques [10], are widely used to reduce
uncertainties from these various sources, existing approaches
must assume a model for the underlying process. As such,
there is often significant uncertainty associated with the
forecast outputs.

In the context of path planning in ocean flows, presence
of forecast uncertainties will lead to significant differences
between predicted and actual path costs and execution times.
Therefore path planning methods should account for these
uncertainties and be able to plan for their effects. However,
only a handful of authors have studied path planning in ocean
flows under forecast uncertainties. Huynh et al.[11] pro-
posed a non-linear robust model predictive control (NRMPC)
method to compute a minimum energy cost policy under
forecast uncertainties in time-varying ocean flows. This
method uses a min-max optimization formulation to compute
the minimum of the worst case costs. However, the method
assumes a bounded uncertainty model and the results are
tightly coupled to the kinematic model used for the vehicle.
Markov Decision Processes (MDP) have been used by Al-
Sabban [12] to compute minimum time paths in a wind-
field, by Wolf et al.[13] to compute fastest time paths for
a balloon in a time-varying wind field, and by Pereira et
al.[14] to plan paths with minimum risk of collision in an
ocean environment. However, none of these works address
the problem of minimum energy path planning in time-
varying flows.

In this paper, two path planning methods that explic-
itly consider the flow velocity forecast uncertainties are
presented. Both methods consider a minimum energy cost
function, and both methods try to minimize the expected
cost of a path. The first method uses an MDP formulation to
obtain an optimal cost policy and the second method uses a
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graph based approach to compute a minimum expected cost
path. The distinction between a policy and a path becomes
important during actual execution of the policy/path. With
an optimal policy, the AMV will compute and apply an
optimal control based on its current state. In contrast, with an
optimal path (parameterized by time), a tracking controller
will be executed on the AMV to follow the path. The main
contributions of this paper are 1) two methods that could be
used to compute optimal paths/policies using uncertain flow
velocity forecasts, 2) a probabilistic transition model for an
autonomous surface vehicle (ASV) in an uncertain flow field,
and 3) a method to compute expected cost and variance of a
given path in an uncertain flow field. In contrast to existing
work [12, 13, 14], our methods consider a more general cost
function, time-varying flows and a more general uncertainty
model.

The rest of the paper are organized as follows. Section
II presents the problem preliminaries, section III presents
the MDP based minimum energy planner and section IV
presents the graph based minimum expected cost path plan-
ner. Simulation results are presented in Section V. The paper
concludes with a discussion and directions for future work
in Section VI.

II. PRELIMINARIES

A. Environment and Flow Model

We consider a 2-D aquatic environment W⊆ R2, subject
to a time-varying flow field Ṽf : WT 7→ R2, where WT =
W× [t, t] and [t, t] ⊂ R≥0 denotes the time interval under
consideration. As such, for x ∈W and t ∈ [t, t], Ṽf(x, t) =[
Ṽf x(x, t), Ṽf y(x, t)

]T denotes the flow velocity, with Ṽf x and
Ṽf y denoting the components of the flow vector in the inertial
frame. The speed of the flow is given by Ṽf (x, t) = ‖Ṽf(x, t)‖
and the maximum flow speed encountered in the domain is
given by Vf m = max

x∈W, t∈[t, t]
Ṽf (x, t).

Ocean flow velocity forecasts obtained for example from
the ROMS database, contain separate predictions for the
zonal current (x-direction) and the meridional current (y-
direction). As such, it is assumed that forecast uncertainties
affect the x-y current components independently and that the
uncertainty in the flow velocity vector can be represented by
the following model.

Ṽf x(x, t) =Vf x(x, t)+η f x(t) (1a)
Ṽf y(x, t) =Vf y(x, t)+η f y(t), (1b)

where Vf x and Vf y represent the deterministic flow velocity
components, and η f x and η f y represent forecast uncertainties
in the x and y directions respectively. It is assumed that these
noise components are drawn from independent Gaussian
distributions η f x ∼ N (0,σ2

f x) and η f y ∼ N (0,σ2
f y). This

is a common model used in the literature to represent
uncertainty in flow velocity forecasts [14, 11]. In practice,
historical nowcasts and forecasts could be used to compute
σ f x and σ f y. It is further assumed that the deterministic x-
y components of the flow velocities, i.e., Vf x and Vf y, are
independent of each other.

B. Vehicle Model
We assume a holonomic kinematic model for the au-

tonomous marine vehicle (AMV). This is a reasonable as-
sumption when the dimensions of the AMV are small when
compared with the dimensions of the flow structures. Using
this model, the net velocity of the vehicle with respect to the
inertial frame is given by

Vnet(x, t) = Ṽf(x, t)+Vstill(x, t), (2)

where Vstill = [Vstill,x, Vstill,y]
T is the velocity of the vehicle

with respect to the flow, i.e., Vstill is the “thrust” vector of the
vehicle. The velocity magnitudes are respectively represented
as, Vnet = ‖Vnet‖, Vf = ‖Ṽf‖, Vstill = ‖Vstill‖. We further
assume that that the actuation capability of the vehicle is
limited and that its maximum speed is lower than the speed
of the surrounding flow i.e., Vstill(x, t)≤Vmax <Vf m.

C. Cost Function

The objective of this work is to develop methods that could
be used to compute minimum energy paths in time-varying
flow fields with an uncertain flow velocity description. Thus
we consider a cost function that represents the energy con-
sumption of the AMV. The total energy consumed by the
AMV is considered to be Etotal = Ehotel +Edrag, where Ehotel
is the energy required to operate the vehicle’s computing
and sensor systems independent of propulsion, and Edrag
is the energy expended to overcome drag forces exerted
by the fluid. Assuming a constant power usage Kh by the
computing and sensor systems gives Ehotel =

∫ tg
ts Khdt. The

drag force Fd encountered by the AMV along a path Γ(t)
is given by Fd(t) = KdV α−1

still (Γ(t), t) where Kd is the drag
coefficient and α ∈ {2,3, ...}. If α = 2 the drag is linear,
if α = 3 the drag is quadratic, and so on. This leads to
Edrag =

∫ tg
ts KdV α

still(Γ(t), t)dt. Thus, the cost of a path is given
by

C(Γ) =
∫ tg

ts
Kh +KdV α

still(Γ(t), t)dt, (3)

and the cost of a small path segment [dx,dy]T , traversed in
time dt is given by,

dc = (Kh +KdV α
still(Γ(t), t))dt. (4)

where Vstill is computed using (2) with Vnet = [ dx
dt ,

dy
dt ]

T .
Note that, Kh and Kd can also be thought of as weighting
parameters between minimum time paths and minimum
energy paths. If a minimum time path is required, we could
set Kd = 0 and proceed, and vice versa. If exact energy
minimization is required, actual values for Kh and Kd should
be used.

D. Probability Distributions

The position of a particle initially at xi = [xi,yi]
T at time

ti, after it is advected by the uncertain flow given in (1) for
a time interval dT , is given by,

x̃i = xi +Ṽf x(xi, ti)dT (5a)
ỹi = yi +Ṽf y(xi, ti)dT. (5b)

4858



Fig. 1: Probability density function of the position of a
particle advected by the uncertain flow. The PDF has a
bivariate Gaussian distribution with mean [µx̃,µỹ]

T .

From (1) and (5), it can be easily seen that x̃i and ỹi have
normally distributed probability density functions (PDFs)
fX̃i

(x̃i) and fỸi
(ỹi) respectively, i.e., X̃i ∼ N (µx̃i ,σ

2
x̃ ) and

Ỹi ∼N (µỹi ,σ
2
ỹ ) where

µx̃i = xi +Vf x(xi, ti)dTi, σx̃ = σ f xdT (6a)
µỹi = yi +Vf y(yi, ti)dTi, σỹ = σ f ydT. (6b)

The vector[µx̃i ,µỹi ]
T can also be interpreted as the position

of the particle when it is advected by the fully deterministic
flow. Note that the standard deviations are independent of
the initial position xi, and hence the i subscripts are dropped.
Since it is assumed that Vf x and Vf y as well as η f x and η f y
are independent, x̃i and ỹi are also independent. Thus the
joint probability density function of x̃i and ỹi is given by

fX̃iỸi
(x̃i, ỹi) = fX̃i

(x̃i) fỸi
(ỹi). (7)

This implies that the region of space reachable by a particle
advected by the uncertain flow over a time step dT has
a bivariate Gaussian distribution with mean [µx̃i ,µỹi ]

T and

covariance matrix
[

σ2
x̃ 0

0 σ2
ỹ

]
(see Fig. 1 ).

Similarly, the position of an AMV initialized at xi =
[xi,yi]

T at time time ti, under the action of a thrust vector
Vstillj = [Vstill j ,x, Vstill j ,y]

T for time dT , is given by,

x j = xi +(Ṽf x(xi, ti)+Vstill j ,x)dT = x̃i +Vstill j ,xdT (8a)

y j = yi +(Ṽf y(xi, ti)+Vstill j ,y)dT = ỹi +Vstill j ,ydT. (8b)

Thus, it can be seen that under the considered uncertainty
model, the AMV coordinates x j, y j have normally distributed
PDFs fX j(x j) and fY j(y j) respectively, i.e., X j ∼ N (µx̃i +

Vstill j ,xdT, σ2
x̃ ) and Yj ∼N (µỹi +Vstill j ,ydT, σ2

ỹ ). Note that
since Vstill j ,x and Vstill j ,y are independent, x j and y j are
independent as well. Thus, similar to a particle advected by
just the flow, the position of the AMV under this model also
has a bivariate Gaussian distribution given by,

fX jY j(x,y) = fX j(x) fY j(y). (9)

III. MDP PLANNER

Due to the uncertainty in the flow velocity forecasts,
the position of the AMV after applying a given control
vector Vstill for a time interval of dT , cannot be determined
deterministically. The position of the AMV is now a random
variable whose properties are determined by the uncertainty

in the flow. Thus, in contrast to the deterministic case, the
next control action that will minimize the overall path cost
cannot be computed a priori. In such scenarios what is
required is an optimal control policy that minimizes the
expected cost, instead of a set of controls that is determined
a priori. Such a minimum expected cost policy could be
determined using a MDP planner. For a given state, the MDP
determines what the control needs to be in order to minimize
the expected cost to goal. An MDP is a tuple (S,A,P,R),
where S is the set of states, A is the set of allowed actions
at each state, P represents the set of transition probabilities,
and R : S× A 7→ R is a reward function that maps action
a at state s to a reward R(s,a). The transition probability
P(s′|s,a) denotes the probability of ending at state s′ after
taking action a at state s.

A. MDP formulation

States (S): The spatio-temporal workspace WT is uni-
formly discretized into a grid (see Fig. 2a), where each node
represents a state s of the system and is identified by the
pair (x, t). The set S consists of all the nodes in the gridded
representation of WT .

Actions (A): The action set A at each state consists of
the allowable controls at that state. It is assumed that all
states have the same set of allowable actions and is given
by {Vstill1 ,Vstill2 , · · ·Vstillm}. Furthermore, each action would
be applied for a single dT time interval. Therefore, when an
action a is applied at state s, only states that are one time
step away from s can be reached, i.e., all states reached from
s = (x, t) will have a time coordinate t +dT (see Fig. 2a).

Transition probabilities (P): Consider a state si with coor-
dinates (xi, ti), at which an action a j is applied. Since, every
action is applied for exactly one time step, P(s′|si,a j) = 0 for
states s′ = (x′, t ′) with time coordinate t ′ 6= ti+dT . For states
with t ′ = ti + dT , consider a state s′ = (x′, ti + dT ) reached
by applying an action a j = Vstillj at state si = (xi, ti). Since
the 2-D space is uniformly discretized with resolutions dx
and dy in the x and y directions respectively, the probability
of reaching s′ is given by the total probability of reaching
a square region with dimensions dx×dy centered around x′
(see Fig. 2b). Therefore, the probability of reaching s′ from
si under an action a j is given by,

P(s′|si,a j) =
∫ y′+dy/2

y′−dy/2

∫ x′+dx/2

x′−dx/2
fX jY j(x,y)dxdy. (10)

This probability is equivalent to reaching a square area
around the intermediate point x̃i which is reached by the
action of the flow alone (area shaded in blue in Fig. 2b). For
a state s′ = (x′, t ′) reached under an action a j = Vstillj , this
intermediate point is given by,

x̃i = x′−Vstillj dT, (11)
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(a) (b)

Fig. 2: (a) The workspace WT is discretized uniformly. Each
node in the grid represents a state. Under a given action a∈A
at state s (red), only the states in the immediate time step
(shaded slice) are accessible. (b) The probability of reaching
state s′ from si under an action a j is considered to be equal
to the probability of reaching the grey shaded area around
x′. It is also equivalent to the probability of reaching area
shaded in blue under the action of the flow alone.

and the corresponding transition probability is given by,

P(s′|si,a j) =
∫ ỹi+dy/2

ỹi−dy/2

∫ x̃i+dx/2

x̃i−dx/2
fX̃iỸi

(x,y)dxdy

=
1

2πσx̃σỹ

∫ ỹi+dy/2

ỹi−dy/2

∫ x̃i+dx/2

x̃i−dx/2
e
−

[
(x−µx̃i )

2

2σ2
x̃

+
(y−µỹi )

2

2σ2
ỹ

]
dxdy. (12)

It can be shown that, for a fixed σx̃ and σỹ, the integral
given in (12) only depends on the differences (x̃i−µx̃i) and
(ỹi−µỹi). Thus, in the implementation, the above integral is
precomputed on a uniformly discretized (x̃i−µx̃i)×(ỹi−µỹi)
grid, and linear interpolation is used on the gridded values
to approximate the value of the integral.

Reward function (R): The energy cost function given in (4)
is used as the reward function. With this reward function, the
MDP planner will compute a policy with minimum expected
energy cost to reach the target from each state.

B. Computation of the optimal policy

Consider a control policy π composed of an infinite
sequence of decision functions {π0,π1, · · ·}, where each
πi : S 7→ A is function that maps a state to an admissible
action. However, since the transitions between states are
probabilistic, it is not possible to directly compute the cost
associated with this control policy. Thus, the cost associated
with a given policy π that starts from a state s, is defined as
the expected cumulative cost incurred by π , and is given by

Jπ(si) = E
[

∑
∞
k=o R

(
sk,πk(sk)

)∣∣∣∣s0 = si

]
where the E denotes

the expectation with respect to the transition probabilities P.
The optimal cost policy π∗ satisfies, J∗(si) = Jπ∗(si)≤ Jπ(si)
for ∀si ∈ S. For a given target state st it has been shown that
[15] the optimal cost vector satisfies

J∗(si) =

0 si = st ,

min
a j∈A

R(si,a j)+ ∑
s′∈S

P(s′|si,a j)J∗(s′) si 6= st

(13)

and that the optimal policy is given by,

π
∗(si) = argmin

a j∈A
R(si,a j)+ ∑

s′∈S
P(s′|si,a j)J∗(s′). (14)

The most common method of solving (13) is value iteration,
where the value of the cost vector J∗ is updated iteratively.
At each iteration, the value of the cost vector is updated as,

Jk+1(si) =

0 si = st

min
a j∈A

R(si,a j)+ ∑
s′∈S

P(s′|si,a j)Jk(s′) si 6= st

(15)
∀si ∈ S with J0(si) = ∞ for si 6= st . It is guaranteed that the
value iteration converges, i.e., Jk(si) → J∗(si) for all si ∈
S [15]. In practice, the value iteration is terminated when
‖Jk+1(si)−Jk(si)‖<ε. The final Jk is used in (14) to compute
the optimal control policy.

Note that the summation in (15) is over all states in S.
However, since P(s′|si,a j) = 0 when t ′ 6= ti+dT , the summa-
tion needs to be done only over a subset of S. The cardinality
of this subset can be further reduced by considering the
properties of the transition probability function given in (12).
It can be seen that P(s′|si,a j)� 1 when

‖x̃i−µx̃i‖
σx̃

� 1 or

when
‖ỹi−µỹi‖

σỹ
� 1. Therefore the subset S̃i j ⊂ S over which

the summation is carried out is considered to be

S̃i j ={s = (x, t)
∣∣t = ti +dT, ‖x−Vstill j ,xdT −µx̃i‖ ≤ Nσ σx̃,

‖y−Vstill j ,ydT −µỹi‖ ≤ Nσ σỹ} (16)

where Nσ > 1 determines the number of standard deviations
considered for the computations. Generally, Nσ = 2 captures
a significant portion of the probability distribution. This
reduction will greatly reduce the computation time of the
cost vector Jk.

IV. MINIMUM EXPECTED COST PLANNER

In this section a graph based minimum expected cost
planner is developed. First the expected cost of a path when
it is executed in an uncertain flow field is computed.

A. Expected path cost

Consider a path segment from (xi, ti) to (xj, t j) of path
{(x0, t0),(x1, t1), · · · ,(xN, tN)} in WT , where ti+1 = ti + dT .
Thus, note that t j = ti + dT . If a fully deterministic flow is
considered, the components of x j are given by,

x j = xi +Vf x(xi, ti)dTi +Vstill,x(xi, ti)dT = µx̃i +Vstilli,xdT
(17a)

y j = yi +Vf y(xi, ti)dTi +Vstill,y(xi, ti)dT = µỹi +Vstilli,ydT.
(17b)

where µx̃i and µỹi are given in (6), and Vstilli,x and Vstilli,y are
the components of the thrust vector Vstilli required to reach
x j from xi when the flow is fully known. However, when the
flow is uncertain, the actual magnitude of the thrust vector
required to reach x j will depend on the intermediate flow
driven location x̃ = [x̃, ỹ]T of the AMV (see Fig. 3). Using
(8) and (17), the components of this actual thrust vector can
be written as,
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Fig. 3: In a fully known flow, the intermediate point is
[µx̃i ,µỹi ]

T and xj could be reached by applying a thrust vector
Vstilli . When the flow is uncertain, the intermediate point x̃i
is a random variable and hence the actual thrust vector Ṽstilli
required to drive the AMV to xj is also a random variable.

Ṽstilli,x =
x j− x̃

dT
=

µx̃i +Vstilli,xdTi− x̃
dT

(18a)

Ṽstilli,y =
y j− ỹ

dT
=

µỹi +Vstilli,ydTi− ỹ
dT

. (18b)

Since x̃ and ỹ are random variables, Ṽstilli,x and Ṽstilli,y are
also random variables, with expected values,

E[Ṽstilli,x] =Vstilli,x +
µx̃i −E[x̃]

dT
=Vstilli,x (19a)

E[Ṽstilli,y] =Vstilli,y +
µỹi −E[ỹ]

dT
=Vstilli,y (19b)

and with variances

V [Ṽstilli,x] =
V [x̃]
dT 2 =

σ2
x̃

dT 2 = σ
2
f x (20a)

V [Ṽstilli,y] =
V [ỹ]
dT 2 =

σ2
ỹ

dT 2 = σ
2
f y. (20b)

Therefore, Ṽstilli,x and Ṽstilli,y have normally distributed PDFs
fṼstilli ,x

(Ṽstilli,x) and fṼstilli ,y
(Ṽstilli,y) respectively, i.e., Ṽstilli,x ∼

N (Vstilli,x, σ2
f x) and Ṽstilli,y ∼N (Vstilli,y, σ2

f y). Furthermore,
since it is assumed that all processes in the x and y directions
are independent, Ṽstilli,x and Ṽstilli,y are also independent.
Thus, the joint probability distribution can be written as

fṼstilli,xṼstilli ,y
(Ṽstilli,x,Ṽstilli,y) = fṼstilli ,x

(Ṽstilli,x) fṼstilli ,y
(Ṽstilli,y).

The cost incurred to traverse this path segment under an
uncertain flow description is given by

dCi =
(
Kh +KdṼ α

stilli

)
dT.

Using the joint PDF of Ṽstilli,x and Ṽstilli,y, the expected value
of Ṽ α

stilli
is given by

E[Ṽ α
stilli ] =

∫ ∫ (
Ṽ 2

stilli,x +Ṽ 2
stilli,y

)α/2 fṼstilli,x
(Ṽstilli,x)

fṼstilli ,y
(Ṽstilli,y)dṼstilli,xdṼstilli,y, (21)

which can be expanded using the definitions of
fṼstilli ,x

(Ṽstilli,x) and fṼstilli ,y
(Ṽstilli,y) to give

E[Ṽ α
stilli ] =

∫ ∫ (x̂2 + ŷ2
)α/2

2πσ f xσ f y
e
−

[
(x̂−Vstilli ,x

)2

2σ2
f x

+
(ŷ−Vstilli ,y

)2

2σ2
f y

]
dx̂dŷ,

(22)

where x̂ and ŷ have been used in place of Ṽstilli,x and Ṽstilli,y
for clarity of exposition. Similarly, the expected value of
Ṽ 2α

stilli
can be expressed as,

E[Ṽ 2α
stilli ] =

∫ ∫ (x̂2 + ŷ2
)α

2πσ f xσ f y
e
−

[
(x̂−Vstilli ,x

)2

2σ2
f x

+
(ŷ−Vstilli ,y

)2

2σ2
f y

]
dx̂dŷ,

(23)
which can be used to find the variance of Ṽ α

stilli
,

V [Ṽ α
stilli ] = E[Ṽ 2α

stilli ]−E[Ṽ α
stilli ]

2. (24)

Thus the expected cost and the cost variance of this path
segment are,

E[dCi] =
(
Kh +KdE[Ṽ α

stilli ]
)
dT (25a)

V [dCi] = K2
d dT 2V [Ṽ α

stilli ]. (25b)

where E[Ṽ α
stilli

] and V [Ṽ α
stilli

] are given by (22) and (24)
respectively. And the expected cost of the complete path
ΓG = {(x0, t0),(x1, t1), · · · ,(xN, tN)} is

E[C(ΓG)] =
N−1

∑
i=0

E[dCi] (26)

and assuming that the cost of each path segment is indepen-
dent from each other (Markovian assumption), the variance
of the path cost is

V [C(ΓG)] =
N−1

∑
i=0

V [dCi]. (27)

For the special case when α = 2 (linear drag), the ex-
pressions for the expected cost and cost variance of a path
segment can be further simplified. When α = 2, Ṽ α

stilli
=

Ṽ 2
stilli = Ṽ 2

stilli,x + Ṽ 2
stilli,y. Thus using the independence of

Ṽstilli,x and Ṽstilli,y, E[Ṽ α
stilli

] can be written as

E[Ṽ 2
stilli ] = E[Ṽ 2

stilli,x]+E[Ṽ 2
stilli,y].

Similarly, after some simple calculations V [Ṽ α
stilli

] can be
written as

V [Ṽ 2
stilli ] = E[Ṽ 4

stilli,x]+E[Ṽ 4
stilli,y]−E[Ṽ 2

stilli,x]
2−E[Ṽ 2

stilli,y]
2.

It can be easily shown that for a normally distributed random
variable X ∼N (µ,σ2),

E[X2] = µ
2 +σ

2 (28a)

E[X4] = 3σ
4 +6µ

2
σ

2 +µ
4. (28b)

Thus,

E[Ṽ 2
stilli ] =V 2

stilli,x +σ
2
f x +V 2

stilli,y +σ
2
f y =V 2

stilli +σ
2
f x +σ

2
f y

and after some tedious simplifications

V [Ṽ 2
stilli ] = 2(σ4

f x +σ
4
f y)+4(V 2

stilli,xσ
2
f x +V 2

stilli,yσ
2
f y).

Thus, when α = 2, (25b) simplifies to

V [dCi] = 2K2
d dT 2(

σ
4
f x +σ

4
f y +2(V 2

stilli,xσ
2
f x +V 2

stilli,yσ
2
f y)
)
,
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and (25a) simplifies to

E[dCi] =
(
Kh +Kd(V 2

stilli +σ2
f x +σ2

f y)
)
dT

=
(
Kh +Kd(σ

2
f x +σ2

f y)+KdV 2
stilli

)
dT

=
(
K̃h +KdV 2

stilli

)
dT (29)

where K̃h = Kh + Kd(σ
2
f x + σ2

f y). Thus the uncertainty in
the flow, increases the constant power requirement of the
AMV by Kd(σ

2
f x+σ2

f y). Furthermore, the total expected path
cost becomes E[C(ΓG)] = C(ΓG) +Kd(σ

2
f x + σ2

f y)(tN − t0).
Thus, under the effect of uncertainty, the total path cost has
increased by Kd(σ

2
f x +σ2

f y)(tN − t0), which can be thought
of as the total energy required to overcome the drag forces
enacted by the uncertainty in the flow field.

B. Graph based minimum expected cost planner

Equations (25a) and (22) show that E[dCi] can be com-
puted, if σ f x, σ f y and the thrust vector Vstilli required to
traverse the path segment in a deterministic flow, are known.
Thus, E[dCi] can be used as the cost function in a graph
based method to compute the minimum expected cost path.

The graph search method used in this work is called
the single time step search (STS) method. During graph
construction, the STS method considers the reachable space
from a given node si = (xi, ti) in a single time step dT ,
under the influence of both the vehicle actuation and the flow
velocity at si. In 2D space, this reachable space is demarcated
by a circle of radius VmaxdT centered at x̃= xi+Vf(xi, ti)dT .
In the STS graph, this reachable space is represented by
a hexagonal lattice of vertices, centered at x̃ with 2n + 1
vertices along the main axis (see 4a). The m = 3n2 +3n+1
number of vertices in this lattice are added to the neighbor
set N (si) of si. For each s j ∈N (si), an edge ei j = (si,s j)
and a vertex s j is added to the graph if the vertex is not
obstructed by an obstacle. All the vertices in N (si) will
have the same time coordinate s j = si + dT . The inter-
vertex spacing of the neighbor lattice is dx =VmaxdT/n. The
graph is constructed by repeating this process at each node
expansion (see Fig. 4b), and the node expansion is guided
by the Dijkstra algorithm. In order to use a heuristic search
method like A*, a suitable heuristic for the expected cost to
reach the goal has to be found. The search is stopped when
the target node st is reached. Additional information about
the STS method can be found in [16].

Note that since the same set of m thrust vectors are used at
each node expansion, E[dC] can be precomputed using (22)
for each of those thrust vectors. In the case when α = 2,
E[dC] canbe directly computed by replacing Kh with K̃h =
Kh +Kd(σ

2
f x +σ2

f y) in the cost function.

V. SIMULATION RESULTS

The planners were used to compute optimal policies/paths
in the Santa Barbara Bay off the coast of California, using
flow velocity forecasts obtained from the Regional Ocean
Model System (ROMS). The Southern California Coastal
Ocean Observing System (SCCOOS) generates these hourly
ocean current forecasts everyday and each forecast is for 72

(a) (b)
Fig. 4: (a) The reachable space from si is a circle of radius
VmaxdT centered at x̃. A hexagonal lattice of vertices is used
to represent this space in the graph. In this case n = 3. (b)
Construction of the graph using the STS method. All the
vertices reachable within a single time step from the base
node are considered as neighbors.

Fig. 5: Root Mean Square Error (RMSE) between successive
iterations of the cost vector Jk. The value iteration converged
in 185 iterations.

hours [9]. The data generated on July 7 and July 8 2016 were
used. The ROMS data has a 3km×3km×1hr spatio-temporal
resolution and linear interpolation was used to obtain flow
velocities at intermediate coordinates. The maximum and
mean flow speeds encountered in the domain were respec-
tively 0.73m/s and 0.18m/s. The standard deviations of the
flow velocity forecasts were set at half the mean flow speed,
i.e., σ f x = σ f y = Vmean/2 = 0.09m/s. All simulations were
for a path between [20, 50]T km and [50, 40]T km, and were
run on a Linux Core I-7 3.4GHz PC with 16GB of RAM,
with cost function parameters set at Kh = 0.0005, Kd = 1 and
α = 2.

A. MDP planner

The optimal cost vector J∗ was computed using a
workspace discretized with dx= dy= 200m and dT = 1000s.
This created a grid containing 191×111×186 = 3,943,386
states for the considered space-time bounds. The transition
probabilities given in (12) were computed on a (x̃i−µx̃i)×
(ỹi − µỹi) grid uniformly discretized at 18m intervals and
Nσ = 5 was selected. Value-iteration given in (15) was used
to compute the cost vector J∗ and it converged in 185
iterations (see Fig. 5). Due to the large number of states, each
iteration took on average 257s (at each iteration Jk(s) has to
be computed for all states), which resulted in a convergence
time of approximately 13 hours.

The converged cost vector was used in (14) to obtain the
optimal cost policy. A path realized using this policy will de-
pend on the actual flow velocities encountered at each state.
Thus, the obtained paths will have a probabilistic distribution
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(a) (b)

Fig. 6: (a) 2D histogram of 100,000 paths computed using the
MDP planner. (b) Histogram of the paths at different time
instances and the average path of the 100,000 realizations
(red). The average path was obtained using the weighted
mean of the histogram at each time step.

in space and as such, histograms of path realizations were
used to obtain a mean path. Fig. 6a shows the 2D histogram
of 100,000 path realizations obtained using the MDP planner.
Fig. 6b shows histograms at different time instances and the
average path for these 100,000 realizations. The average path
was obtained by considering the weighted average of the
histogram at each time step.

Remark 1: The MDP planner computes an optimal policy.
The control action to take at a given state will be computed
‘in-situ’ using this optimal cost policy, and the computed
control action will be executed by the vehicle. However,
unless the model used for the AMV is very accurate, this
control cannot be directly executed by the vehicle. Instead,
the vehicle will use its lower level controllers to ‘follow’ this
higher level control. Thus, in addition to flow uncertainties,
uncertainties and errors in the control stack will also affect
the outcome of this control.

Remark 2: If the start and goal locations change, the
cost vector J∗ has to be recomputed for the new start goal
combination. The high convergence time of the MDP planner
implies that it is not suitable in applications where the start-
goal combinations change frequently. A similar argument
applies if the forecast uncertainties are changed.

B. Minimum expected cost planner

The graph based minimum expected cost planned was
used to compute a minimum expected cost path between
the same start goal locations as the MDP planner. Since
α = 2, and σ f x = σ f y = 0.09m/s, a modified value of Kh =
Kh +Kd(σ

2
f x +σ2

f y = 0.167 was used with the STS method
with dT = 1000s to compute the path. Fig. 7 shows the
computed path. The expected path cost was 7120J, and the
time required to compute this path was 3160s. To verify the
expected path cost, the obtained path was executed 100,000
times in simulations using the vehicle model given in (2), in a
flow field with the same uncertainties as the ones used for the
path computation, and the actual paths costs were recorded.
Note that in these cost computations, the actual value of Kd =
0.0005 was used. The average expected path cost was 7120J
and the standard deviation of the path cost was 427.1J. The
predicted standard deviation using (27) was 426.7J. Thus it
can be seen that the expected path costs and cost variances

TABLE I: Cost comparison of the three candidate paths

Path Average Path Cost (J)
in deterministic flow in uncertain flow

minExpCost 4304 7120

MDP 4258 7125

minDetCost 4219 7142

Fig. 7: Minimum expected cost path computed using the
minimum expected cost planner. Expected path cost was
7120J. The loop structure near [20, 45]T arises due to a
circulation of the currents as it passes through that region.

predicted by (26) and (27) are accurate. Furthermore, in
oder to verify that the path computed by the minimum
expected cost planner actually has the minimum expected
cost, three candidate paths were executed 100,000 times in
simulations and the path cost statistics were recorded. The
three candidate paths selected were, 1) minExpCost path:
path obtained from the minimum expected cost planner, 2)
MDP path: average path obtained from the MDP planner
and 3) minDetCost path: path obtained in a deterministic
flow (by setting σ f x = σ f x = 0). The path cost statistics for
the three candidate paths are summarized in Table I. It can
be seen that when the flow is fully known, the minDetCost
path gives the minimum cost, and when the flow velocity
forecasts are uncertain, the minExpCost path has the least
expected cost.

VI. CONCLUSIONS

In this paper the problem of path planning under fore-
cast uncertainty was addressed. Two methods to compute
minimum expected cost policies and paths over an uncertain
flow model were presented. A transition probability model
was developed to compute the probability of transition from
one state to another under a given action. Furthermore, a
method to compute the expected cost of a path when it
is executed in an uncertain flow field was also presented.
The first planning method, the MPD planner, uses a Markov
decision process to compute an optimal cost policy, while the
second method, the minimum expected cost planner, uses
the expected path segment cost in a graph search method
to compute the minimum expected cost path. Both methods
were used to compute minimum cost policies/paths in an
ocean environment. The MDP planner outputs an optimal
cost policy which can be used by the AMV to compute a
control depending on its current state. It was seen that the
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MDP planner is more suitable for applications in which the
start/goal locations and the uncertainty levels are constant.
However, since this method outputs a policy instead of a
path, the actual execution cost might turn out to be lower
than the cost of a path obtained by the minimum expected
cost planner.

The graph based minimum cost planner on the other hand
computes paths much faster, and as a result is more suited
for applications where frequent path re-computations are
necessary. Furthermore, it was seen that the path returned by
this planner had the minimum average cost when executed
in an uncertain flow field.

In this work it was assumed that the maximum AMV speed
is always less than the maximum flow speed. Thus strong
uncertain currents can advect the vehicle away from the
computed minimum cost path and make the path inefficient
and possibly infeasible. The effects of such large fluctuations
on reachability and controllability in the minimum expected
cost path planner needs to be further investigated.

The simulation results provided in this paper are based
on assumed values for flow velocity uncertainties. It is
worthwhile to investigate the performance of the presented
methods in flows with known statistics. Thus experimentally
validating the strategies within a flow field with known
uncertainties is a direction for future work. Furthermore,
similar to most other works in literature, we assume a
Gaussian distribution for the uncertainty in the derivation
of the proposed methods. The validity of such assumptions
need to be investigated. Towards this end, we are currently
looking at experimentally generating flow fields patterned
on actual ocean flows, and analyzing the data to characterize
uncertainty models.
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