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Adaptive Sampling and Reduced-Order Modeling of
Dynamic Processes by Robot Teams

Tahiya Salam

Abstract—This letter presents a strategy to enable a team of mo-
bile robots to adaptively sample and track a dynamic process. We
propose a distributed strategy, where robots collect sparse sensor
measurements, create a reduced-order model of a spatio-temporal
process, and use this model to estimate field values for areas without
sensor measurements of the dynamic process. The robots then use
these estimates of the field, or inferences about the process, to adapt
the model and reconfigure their sensing locations. The key contri-
butions of this process are twofold: first, leveraging the dynamics
of the process of interest to determine where to sample and how
to estimate the process; and second, maintaining fully distributed
models, sensor measurements, and estimates of the time-varying
process. We illustrate the application of the proposed solution in
simulation and compare it to centralized and global approaches.
We also test our approach with physical marine robots sampling a
process in a water tank.

Index Terms—Multi-robot systems, distributed robot systems,
sensor networks, swarms, marine robotics.

I. INTRODUCTION

EING able to estimate and predict information about dy-
B namic processes deepens our understanding of biological,
chemical, and physical phenomena in the environment. Often,
these dynamic processes exhibit complex, spatio-temporal be-
haviors. Mobile robots are particularly well-suited to monitor
these processes because of their abilities to carry sensors and
adapt their sensing locations. Robots can be used to support
a wide range of activities dependent on tracking and predict-
ing processes that vary across both space and time, such as
tracking oil spills in water or pollutant concentrations in air for
environmental monitoring, gas leaks for pipeline repair, or for-
est fire boundaries for search and rescue. For these processes,
autonomous mobile robots modeling the environment and deter-
mining where to gather sensor measurements are cheaper than
global tracking systems and more adaptive than fixed sensors.
The process dynamics provide rich information about its spa-
tial and temporal dependencies. Thus, robots should leverage
their mobility and sensing capabilities to adequately model and
estimate the environment.
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However, given that they are inherently complicated, spatio-
temporal processes are often difficult to model in a meaningful
way, and even in scenarios where representations are available,
they are often high-dimensional, which is computationally bur-
densome. Additionally, these processes often occur in dynamic,
uncertain environments, so robots should not rely on centralized
techniques to mitigate the effects of communication constraints
and robot failures. The question then still remains as to how
robots can leverage the spatio-temporal dynamics of the pro-
cess to model and estimate the environment in a distributed
way.

Previous works have studied multi-robot coordination for en-
vironmental monitoring, mapping, and modeling. The works
most related to this letter fall under two categories: providing
coverage and maximizing information (or alternatively mini-
mizing entropy) using Gaussian processes (GPs). In [1], a tech-
nique was developed for providing optimal sensor placement
in an environment, where a weighting function accounting for
sensing quality and coverage of the environment has to be known
a priori. This work has been extended in several ways. In [2],
the stochastic uncertainty of modeling the weighting function is
incorporated online to optimize the deployment of the sensors.
In [3], authors propose a method that does not rely on weighting
functions being known a priori and instead learns them online.
Despite their advantages, coverage control techniques do not
take into account the equations governing the dynamic process
and thus the determined placement of sensors may not capture
the relevant features needed to estimate the field.

GPs are widely used in modeling spatio-temporal processes.
The framework in [4] models the environment as GPs, learns
confidence measures on the uncertainty of the model, and uti-
lizes this uncertainty in path planning to minimize risk. In [5],
authors also use GPs to model the desired quantity of inter-
est for monitoring as part of a stochastic optimization strategy
to minimize regret when collecting samples. In [6], robots use
GPs to create a map of the environment, partition the space
to determine nearby locations, and selects future sampling lo-
cations based on reducing the entropy in the map. The work
presented in [7] adapts the model in real-time based on obser-
vations and optimizes sensing locations based on the changing
model. However, as with coverage control techniques, GPs ne-
glect the principle dynamics of the fluid flow. GPs may not cap-
ture important nonlinearities of the process of interest and are
inappropriate for functions with varying smoothness or scales of
variation. These studies neglect the temporal components of the
field of interest by accounting for only spatial, and not temporal,
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correspondences of the field with parameters of interest or by
employing a separate GP for each spatial location.

Other approaches, such as [8] and [9] study sensor place-
ments. However, sensor placement methods do not leverage
robots’ mobility and do not account for their ability to move
locations. In [10] and [11], authors consider the fusion and
control of active sensor networks. In this letter, we focus on
modeling and estimation of the spatio-temporal process and
leverage the process model to adapt the robots’ sensing loca-
tions. Many works, such as [12]-[16], and [17], have employed
proper orthogonal diagonalization (POD) for sensing, modeling,
and estimation of different spatio-temporal processes of varying
complexity. However, these works rely solely on fixed sensors,
complete time-series data to compute the reduced-order model,
or do not update the model after collecting new data.

The contributions of this letter are two-fold. First, we propose
a framework that uses the dynamics of the process to allow
robots to compactly model the environment, infer properties of
the environment using sparse sensing data, and assimilate these
inferences to update the model and determine if they should
navigate to new sensing locations. The framework allows for
a non-balanced assignment of regions to robots, where robots
are able to estimate properties of the environment in regions for
which there is no available sensing data. Second, we exploit the
structures of the model and inference techniques to allow for the
process model and estimated field values to be computed in a
fully distributed fashion. Unlike other works in this domain, we
explicitly use the dominant spatial and temporal characteristics
of the dynamic process in order to allow robots to determine
sensing locations and adapt the model and estimations.

II. PROBLEM STATEMENT

Consider tracking a dynamic process in a continuous spatial
region R € R? or R € R3. R can be discretized into n spatial
points such that at each of the points, a measurement, such as
concentration or temperature, can be obtained and provides a
representation of the spatio-temporal dynamic process, P. The
n spatial points can be grouped into s non-overlapping regions.

Consider a team of ¢ robots, where each robot is equipped
with a sensor that is capable of sensing across each of the s
sensing regions, where g < s. The quality and range of the sen-
sors on the robots are homogeneous. Furthermore, the robots
are capable of localization and can communicate small pack-
ets of information, such as matrices, with their neighbors. To
begin with, robots can estimate the dynamic process using ei-
ther historical data or some forecast model. Since ¢ < s, robots
are assigned multiple regions to monitor. However, since each
robot’s sensor range is finite, the robot can only sense a subset of
the regions assigned to it. As such, the robot must combine a pre-
existing model of the process and sensing measurements from
other areas to infer the measurements in the assigned regions
that are outside of its sensing range. Each robot only main-
tains a model of the environment for its assigned regions, where
robots are assigned disjoint sets of regions. Each robot is able to
share a compact amount of information about its model with its
neighbors and use aggregated information about the models to
determine the optimal sensing regions to achieve this estimation.
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The communication network only needs to maintain connectiv-
ity. Robots can move and create or break their connections with
other robots, so long as the graph topology remains connected.
In our letter, we assume robots communicate following broad-
cast network architecture. The data broadcasted are matrices of
fixed size corresponding to low-dimensional representations of
the evolving process of interest.

Problem Statement: Given a region R, a team of ¢ homoge-
neous robots such that ¢ << s, develop an adaptive sampling
and tracking strategy to track a dynamic process P, where each
robot is capable of sensing all the points within the region it is
assigned to.

In our solution to this problem, each robot is assigned its own
sensing region. Each of the remaining s — ¢ regions without sen-
sor measurements are jointly estimated by robots. The models
for these regions may be assigned arbitrarily to robots after their
joint estimation to avoid robots maintaining redundant models
of areas without sensing estimates. Thus, each robot does not
need to keep a full model of the environment and instead only
needs to keep a model of its assigned regions. Though robots
are taking sparse measurements, they are able to produce the
least-squares error estimation of the dynamic process. Robots
can update their models in a distributed fashion, even though the
process exhibits complex relationships over the regions. Each
robot is able to adapt its existing model based on new sensing
information in its own region and a reduced representation of
the new sensing information from other robots. All of the robots
can reconfigure their locations based on their updated models
from the new sensing data.

III. METHODOLOGY

The following section will describe the procedures for a)
obtaining a reduced order model, b) selecting sensing locations
for optimal field reconstruction, and c) using new measurements
to obtain estimates of the field, update the reduced order model
and select new sensing locations. We will begin by describing
the method as a fully centralized procedure and later describe
how to implement the procedure in a distributed fashion.

A. Reduced Order Model Using Proper Orthogonal
Decomposition

Fluid flows are infinite-dimensional fields that can widely
vary temporally and spatially and exhibit complex behavior. In
order to extract the dominant dynamics of these fields, tech-
niques for modal analysis are often used to construct a low-
dimensional approximation of flows. We use the POD [18], [19]
to obtain a representative reduced order model of the flow field.

For POD analysis, m snapshots of the field are collected, ei-
ther through experimentation or numerical simulations, such
that at each time t =1,...,m, x(t) = [21(t),..., 2, ()],
where n is the spatial dimension of some discretization of the
flow field. A covariance matrix is constructed as

1 & 1
K= dz)zt) = EXXT, (1)

t=1

where X € R"*™ with its columns as x(t).
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The low-dimensional basis is created by solving the symmet-
ric eigenvalue problem

Ko; = 1y, 2

where K has n eigenvalues such that A} > As... > A, > 0 and
the eigenvectors ¢ are pairwise orthonormal.

The original basis is then truncated into a new basis ® by
choosing k eigenvectors that capture a user-defined fraction, F,
of the total variance of the system, such that their eigenvalues
satisfy

k
o
Lok p (3)
Zi:l i
Thus, each term @ (t) can be written as

x(t) = Pe(t), “4)

where ¢(t) = [c1(t), ..., cx(t)]" holds time-dependent coeffi-
cients and ® € R"** with its columns as ¢, ..., ¢g. The
low-dimensional, orthogonal subspace associated with ® is an
optimal approximation of the data with respect to minimizing
least squares error.

B. Optimizing Robot Locations for Field Reconstruction

Given a low-dimensional representation of the subspace on
which the data are located, the properties of the orthogonal
bases can be used to compute the optimal set of locations to
place robots in order to reconstruct the field from sparse data in
real-time.

Consider the problem of reconstructing a field from mea-
surements in ¢ arbitrary sensing regions. Given s total sensing
regions, let S C {1,...,s} where S contains the locations of
the ¢ sensing regions. Measurements of the field are collected
over the ¢ sensing regions as y,.(t) for sensing region r € S,
where each y,.(t) € R" *! for n, points of measurements in
region r. Let matrices ®,. € R"" *k such that the rows of ®,. are
the rows of ® corresponding to the locations in sensing region r.
Using the gappy POD [12], [14], [19], the time-dependent coef-
ficients that minimize the distance between y(t), sensor values,
and ¢(t), the projection of sensor values onto the subspace
associated with the vectors {®,.},c¢ can be found using

ét)=A"'B

for A = Z &, ®, and B = Z @, y.(t), (5
res res

where this time-dependent coefficient é(¢) is then applied to ®
as in (4) to recover the values of the field for which there are no
sensor measurements.

Next, we discuss how to select ¢ sensing regions from the set
of S possible regions to optimize the reconstruction of the full
field using only measurements from the ¢ regions. The matrix
A € R"*¥ depends only on the set of S sensing regions and
is not time varying. If measurements from all sensing regions
were used, the matrix A would be the identity matrix since
A = ®"® = I for ® containing orthonormal columns and the
coefficients é(t) could be calculated exactly using (4). However,
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Fx
< ) |
- - e, A
I
P, 5 P,
3 @) (@)

(a) (b)

Fig. 1. Geometric interpretation of maximizing minimum eigenvalue. The
data point y,, containing all the measurements of the field is projected as y,
onto the subspace P, , where y,- equivalently represents a vector of just the sensor
measurements, and is projected as ¢, onto the low-dimensional subspace ®.
As the angle between P, and the subspace associated with ® decreases, the
projection error between y, and g,, also decreases.

since only some and not all sensing regions are being used, the
sensing regions should be chosen such that the rows of the
eigenvectors corresponding to these sensing regions create a
basis that is close to orthogonal. Additionally, [13] provides a
criteria for selecting the optimal set of sensing regions S as

max min }; (A), (6)

where maximizing the minimum eigenvalue of A in turn mini-
mizes the maximum angle between the subspace associated with
® and P, the subspace associated with using only the sensor
measurements, as shown in Fig. 1.

Let a;; represent entries in A and r; = >, |a;;|, the Ger-
shgorin circle theorem [20] states that all eigenvalues of A lie
in a circle centered at a;; with radius r;. Using this property of
the eigenvalues of A, an estimation of (6) is given by

max min a;; , (7N
3

where maximizing the minimum diagonal element of A seeks
the set S that results in A being both close to orthonormal and
minimizing the distance between the the subspaces associated
with @ and {®,},cs. The algorithm developed in [13] and
extended in [8] is then used to find the set S that satisfies criteria

().

C. Adaptive Computation of Reduced Order Model and Robot
Locations

The techniques described in [8], [12]-[14] rely on computing
a POD basis vectors using all the available snapshots of data
over the process. Instead, we propose a method that dynam-
ically adapts the POD basis vectors using incoming data and
reconfigures the position of the robots based on the adapted
POD.

To begin with, at time instance 0, POD basis vectors
®(0) are computed using T arbitrarily selected snapshots
{z(to,1),...,x(to,1)} where z(t) € R"*!. The T snapshots
are gathered from either experiments or numerical simulation
based on the equations governing the process of interest. A set
of sensing regions S(0) is selected according to the algorithm
described above, where robots are then deployed to collect mea-
surements. Estimates of the field are computed using y..(¢) for
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Fig. 2. Comparison of centralized framework for model-inference-
assimilation scheme and corresponding distributed scheme. In (a), the cen-
tralized frameworks keeps a global model which is combined with sensor mea-
surements to estimate the field and update the model. In (b), the distributed
framework allows robots take sensing measurements at specific regions and es-
timate the values of the field using the current model and their neighbors’ data.
These estimates are used to update the model at robots’ assigned locations.
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Fig. 3. Visualization of spatial points corresponding to rows of eigenvectors
in POD basis. In (a), the full field is shown, where each region is a set of points
in the field. Blue regions are monitored by the robots and thus are the regions
with sensor measurements, while the field in the white regions are inferred using
the ROM. In (b), the dashed lines contain the regions for which each robot either
takes measurements or estimates values. The matrix in (¢) shows rows in the
POD basis that correspond to a single robot’s assigned regions indicated with
the gray dashed lines.

r € Sy the collected sensing data, {®,.(t9)},c the POD basis
over the sensing regions, and the relationship (5). At time in-
stance 1, the new inferences are assimilated into the covariance
matrix R as in (1) as new snapshots, at which point the POD
basis vectors are recomputed as ®(1) and a new set of sensing
regions S(1) are found. This procedure is repeated for the du-
ration of the mission. This is contrast to other techniques that
compute the POD basis requiring all the initial data and do not
update the POD basis after new observations.

D. Distributed Algorithm

The procedure described above can be implemented in a dis-
tributed fashion. A comparison of the centralized and distributed
approach is shown in Fig. 2. The model of the environment is
represented as the matrix of eigenvectors, where each row of
the matrix corresponds to a spatial point. These can be dis-
tributed to different robots, and robots can keep on-board the
rows corresponding to their assigned regions as shown in Fig. 3.
The push-sum algorithm [21] is leveraged to allow for robots
to maintain field measurements only over their respective re-
gions, while occasionally exchanging small packets of informa-
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Fig. 4. Regions assigned to robot for sensing, estimating and modeling. The

robot senses at a location and is assigned to keep track of models of the regions
for which no sensor measurements exists. The robot uses its own ROM over its
assigned regions, its collected sensor measurements, and sensor measurements
from its neighbors to estimate the values of the field for regions without sensor
measurements, all of which will then be used to update its reduced order model.

Algorithm 1: Push-Sum Algorithm.

Input : P; from each robot

Output: robot i’s estimate P of matrix P
select ’Z, let w; =1, and w; = 0 Vi #£1;
for each robot i in parallel do

P, =P;
for loop do

Py =3 e, mijPy
Wi = Y5, Mijws;
end
return P¢ =
end

p;
w;

tion with their neighbors to understand the areas of the field
without sensor measurements and recompute optimal sensing
locations, shown in Fig. 4. Estimating the models in the areas
without sensor measurements requires aggregating information
from previous models over these areas and the new sensing mea-
surements. Instead of having all robots compute the estimates of
field measurements for regions without sensor measurements,
these regions are assigned arbitrarily to robots, such that the
values at each region are only estimated by one robot.

The push-sum algorithm is described here. Suppose some ma-
trix P = 3. P;. Further, there exists agents where each agent ¢
has access to matrix P; and can communicate with its neighbors
N;. Let M be an arbitrary stochastic matrix such that m;; = 0
if agent ¢ is not a neighbor to agent j. A stochastic matrix is
used to exploit the equivalence between averaging and Markov
chains; we refer the interested reader to [21] for more details.
Each agent ¢ can compute 15", its own estimate of P, as shown
in Algorithm 1.

The push-sum algorithm is used for the distributed computa-
tions of a) the covariance matrix from data at sensing regions, b)
the eigenvectors and eigenvalues for the POD basis vectors, and
c¢) the time-dependent coefficients for estimating the full field.
First, we show how to compute the eigenvalues and eigenvec-
tors of a pre-computed covariance matrix in a distributed fashion
using existing techniques. Then, we will bypass the need to di-
rectly compute the covariance matrix and instead compute the
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Algorithm 2: Orthogonal Iteration.

Algorithm 3: Distributed Eigenvectors From Data.

set Q € R™** with random elements;
for loop do

V =KQ;

QR Y v
end
return columns of @ as eigenvectors;
return diagonals of R as eigenvalues

eigenvalues and eigenvectors from on-board data in a distributed
setting.

The method of orthogonal iteration allows for the computa-
tion of the top k eigenvectors and eigenvalues of a symmetric
matrix K € R™"*" using Algorithm 2.

The distributed computation of Algorithm 2 rests on the fol-
lowing matrix properties, shown in detail in [21]. However,
while [21] assumes a bijection between the rows of the co-
variance matrix and the robots performing the computation,
we show here that this is not strictly necessary, allowing for a
non-balanced assignment of rows to robots. Every row of the
covariance matrix K corresponds to a location in the field. Each
robot ¢ is assigned the set of rows, L;, of the matrices K and
Q corresponding to the spatial points in its sensing region and
some arbitrary subset of the spatial points of the regions not
covered by any robot. Let L = L; U (U;cy, Lj), where N; is
the set of neighbors of robot 7 so that L is the set that contains all
the spatial points assigned to robot 7 and its neighbors. To start,
the rows Vj for | € L; can be estimated as a linear combination
of the random row vectors Q.,, over all m € L with coefficients
am - Then each robot can use an estimate of the matrix R to
apply to its set of rows V; for [ € L; to find the correspond-
ing rows @ for the next iteration of orthogonal iteration. An
estimate of R is found by leveraging the relation:

W=V'V=R'Q'"QR, (8)

where QTQ = I since @ orthonormal and R is a unique
upper triangular matrix. Since W =3>"_, VCTVC, each
agent can compute W; over its sensing region as W, =
Dle L VlTVl. Using the push-sum algorithm, each agent can

compute estimates Wi, perform a Cholesky factorization to
compute W# = R R;, and apply R; " to its rows V; to com-
pute Q; = ViR, . Q) is then used in the next iteration of the
orthonormal iteration algorithm. This requires the entries the
covariance matrix K to be known and communication between
neighbors to estimate the values V.

We leverage the following relation presented in [22] to elim-
inate the centralized computation of K = %X X " and instead
allow for the distributed computation of the eigenvectors and
eigenvalues of K directly from X without explicitly construct-
ing K. Let the Diag operator create a diagonal matrix out of a
given vector and the diag operator extract the diagonal elements

set Q € R™** with random elements;
select 7, let w; =1, and w; =0 Vi #£ 1
for loop do
for each row r of Q in parallel do
for each robot i do
Zi = er, 1r Xt
Compute Z; with Algorithm 1 (push-sum);
for [ € L; do
‘ o = 227 Xy
end
Wi = ZlELi ‘/LTW 5
Compute W; with Algorithm 1 (push-sum);
Use Cholesky factorization W# = R R;;
Qi =ViR; ',

end
end

end
return rows @; as eigenvectors for robot 7;
return diagonals of R; as eigenvalues for robot ¢;

of a given matrix. Each column v; can be computed as

1
v; = EXXqu

1
—diag( XX "q:17
- iag( q;1)

1
Ediag(XXTDiag(qj)llT)

%diag[X(llTDiag(qj)X)T]. )

For g¢; = [¢;(1),...,¢j(n)], the lth row of Diag(g;)X is
equal to g;(1)X;. Furthermore, the quantity 11" Diag(g;)X
is a matrix where each row is equal to the sum of all the rows
of Diag(qj)X. Thus, only the quantity F' = Y"""_, D, where
D = Diag(g;)X and D, denotes the rows of D, needs to be
computed. Each robot can individually compute the quantity
F; =) 1c1. ¢;(1) Xy and then can compute estimates F using
the push-sum algorithm. Then, the /th row of v; is equal to
%F”Xl. This is carried for all k£ columns of @ and V. The
full procedure for distributed computation of eigenvectors and
eigenvalues is shown in Algorithm 3.

To estimate the time-dependent coefficients, each robot can
compute its own A; and B; as in (5) and use the push-sum
algorithm to compute estimates A® and B®. Then, robots can
compute the estimate &; = (A?)~! B and apply coefficients &;
to the rows @ to estimate the values §; = Q;¢; the regions
[ € L; for which we do not have sensor measurements.

E. Task Allocation

Using the distributed algorithm, individual robots can adap-
tively calculate their respective eigenvectors and eigenval-
ues. They can then share the necessary properties of their
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eigenvectors to each compute the optimal sensing locations.
After finding the set of optimal sensing locations, robots are
assigned to locations as to minimize the total cumulative path
traveled by all robots. The total cumulative path traveled by the
robots is measured as Euclidean distance of the robots’ current
positions to the desired sensing locations.

IV. SIMULATIONS AND EXPERIMENTS

Analyses were carried out both in simulation and on physical
robots. In simulation, a 1 m x 1 m 2-dimensional grid space
was modeled using video data from an experimental flow tank at
low Reynolds number. The fluid experiment was conducted in a
10 cm X 10 cm tank with glycerol at a depth of 1 — 2 cm. The
tank is equipped with a4 x 4 array of equally spaced submerged
disks. The mechanism creates a cellular flow where two sets of
8 disks are separately controlled via independent stepper motors
and speed controllers. As such, the resulting flow have both a
spatially non-uniform and a temporally complex pattern. The
dye was strategically placed at the start of the experiment such
that the resulting unsteady flow would stretch the dye along
dynamically distinct regions in the flow field. Concentration
values of the dye in the tank were estimated for each time step
from the grayscale values of the pixels of the images from a
grayscale video of the LoRe tank.

In simulation, the grid space was discretized into 9 non-
overlapping regions. 4 robots were simulated in the field. Con-
centration values of the field were gathered for 100 equally
spaced times across the time series, and Gaussian noise was then
added to these concentration values. These were then used to
construct the initial POD basis for the distributed optimal place-
ment algorithm. Data was collected for another 100 sequential
times before adapting the POD basis and recomputing the op-
timal placement algorithm. The distributed optimal placement
algorithm was compared to the centralized optimal placement
algorithm, where all computations occur on a centralized sys-
tem and are broadcasted to robots. Additionally, the distributed
optimal placement algorithm were compared with radial basis
function (RBF) interpolation schemes. Two RBF interpolations
were computed using the real data: 1) from the regions deter-
mined as optimal sensing locations from the distributed method
and 2) from randomly selected points across the entire field. All
of these methods were compared against the optimal placement
algorithm that was calculated using noiseless data across the
entirety of the time series.

Experiments were carried out in a 5 m X 3 m water tank
using 4 marine robots, shown in Fig. 5(a). The concentration
field was mapped and projected onto the tank using the video
from the LoRe tank, shown in Fig. 5(b). The robots then tracked
the projected concentration field using the distributed algorithm.

V. RESULTS

The simulation results of the comparison of the various field
estimation schemes over the entire time series are shown in
Fig. 6. The Frobenius norm-wise error between the actual con-
centration value and the estimated field computed using various
algorithms was computed for each time step. The Frobenius
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(b)

Fig. 5. Experimental setup with marine robots. (a) Robot boat equipped with
pose information from motion capture system and ability to communicate.
(b) Water tank with projection of dynamic process depicted in white and circled
in red.
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Fig. 6. Norm-wise relative error between field simulation and various field

estimation algorithms at each time step. Estimations are calculated using
(a) RBF using sensing data, (b) RBF using random points, (c) proposed dis-
tributed algorithm, (d) centralized version of proposed algorithm. Black circles
represent estimations calculated using the optimal placement determined by
using all data to calculate the POD basis. Gray vertical lines indicate robots
switching their placement.

norm-wise error, ¢, is calculated for estimate &(t) using ¢ =
12(8) — @(®)||i /|| (t) ||, where [[2(8) [» = /3, [2: (0P
Both RBF interpolation schemes perform significantly worse
than the optimal placement algorithms. Even in the case of the
RBF with randomly selected sensor points, the field estimation
is approximately an order of magnitude worse than the optimal
field estimation. However, the distributed algorithm and cen-
tralized algorithm perform just slightly worse than the optimal
placement determined by using all data to calculate the POD
basis.

The mean absolute error of the various field estimation
schemes is shown in Fig. 7. The RBF interpolation scheme
using the data from the sensor measurements results in high er-
ror across the field, as it is unable to adequately estimate values
in regions far from the sensing locations. The RBF interpola-
tion scheme using random points fails to capture the interesting
features of the process. The distributed algorithm fails in simi-
lar areas as compared to the optimal placement algorithm. This
can be attributed to little to no data being collected over these
regions, which makes it difficult to estimate the concentration
values over these areas. Additionally, the distributed algorithm
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Fig. 7. Mean absolute error at spatial points calculated over time series for

various field estimation algorithms. Concentrations at points are calculated using
(a) RBF using sensing data, (b) RBF using random points, (c) optimal placement
determined by using all data to calculate the POD basis, (d) centralized version
of proposed algorithm, and (f) proposed distributed algorithm.
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Fig. 8. Concentration field and absolute error at spatial points before and after

robots switch locations using distributed placement algorithm. Concentration
field (a) and absolute errors (b) are before the switch; concentration field (c¢) and
absolute errors (d) are after assimilating data and switching positions.

performs slightly worse than the centralized algorithm. This is
expected given the fact that distributed algorithm uses only local
information in its computation of the field estimate.

The adaptive nature of the algorithm allows robots to rectify
tracking errors by recomputing the POD basis and possibly
reassigning the sensing locations. This is shown in Fig. 8 where
robots are able to improve field measurements for areas of high
error after reassimilating their collected data to determine new
sensing locations and a new POD basis.

The distributed algorithm demonstrates consistent results
across various discretizations of the spatial region, various num-
bers of robots, and various initial models of the dynamic process,
as shown in Fig. 9 and 10. Mean absolute errors between the
estimated field and the actual field for 4 robots with 9 total
regions in Fig. 9(a) and for 8 robots with 25 total regions in
Fig. 9(c) perform comparably despite a nearly 15% reduction
in the area being sensed by robots. This can be attributed to the
robustness of the constructed model. Despite, the use of various
initial POD bases, the distributed optimal placement eventually
results in similar errors estimations as shown by Fig. 10(a)—(d).
This is again due to the adaptive nature of the algorithm.
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tween field and distributed algorithm for various discretizations of field, numbers
of robots, and snapshots used to compute initial POD basis. Algorithm tested
for (a) 4 robots, 9 regions, and 100 snapshots, for (b) 4 robots, 9 regions, and
500 snapshots, for (c) 8 robots, 25 regions, and 100 snapshots, and for (d) 8
robots, 25 regions, and 500 snapshots.
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for various discretizations of field, numbers of robots, and snapshots used to
compute original POD basis. Algorithm tested for (a) 4 robots, 9 regions, and
100 snapshots, for (b) 4 robots, 9 regions, and 500 snapshots, for (c) 8 robots, 25
regions, and 100 snapshots, and for (d) 8 robots, 25 regions, and 500 snapshots.

(b)

(a)

Fig. 11.  Robotic boats tracking dynamic process in water tank. The dynamic
process is shown in white, and robots in blue, red, yellow, and green. (a) Robots
assume positions based on the initial POD basis. (b) Robots switch positions
after collecting sensor measurements and updating their models.

In the water tank, the robots were able to track the projected
dye. The robots collect measurements from their sensing loca-
tions and adapt their assigned models. They are able to switch
locations to track the process as shown in Fig. 11.

VI. CONCLUSIONS

In this letter, we have proposed a solution for the sampling
and modeling of a dynamic process with a team of mobile
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robots. This approach uses distributed to techniques to allow
for modeling and estimation of a field. Unlike other works, this
letter leverages the rich information from the process dynamics
to inform where robots should sense, how they should best
model their environment, and how they should adapt their belief
about the environment.

For future work, we would like include an analysis on the error
bounds of the algorithm. Namely, we hope to establish upper
bounds on the errors introduced through reduced order modeling
and the distributed computations. Additionally, we would like to
investigate the use heterogeneous robots, such as a team of aerial
robots and marine robots to produce multi-fidelity models of the
environments. Incorporating these multi-fidelity models may
allow for the use of complementary information. For example,
aerial robots may be able to collect and model less granular
information but over wider areas of the field, while marine robots
may be able to collect and model higher granularity information
but only at specific locations of the field.
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