
Multi-Agent Search for Source Localization in a

Turbulent Medium

Hadi Hajieghrarya, M. Ani Hsieha, and Ira B. Schwartzb

a Scalable Autonomous Systems Lab, Mechanical Engineering & Mechanics, Drexel
University, Philadelphia, PA 19104, USA

b Nonlinear Systems Dynamics Section, Plasma Physics Division, Code 6792, U.S. Naval
Research Laboratory, Washington, DC 20375, USA

Abstract

We extend the gradient-less search strategy referred as “infotaxis” to a dis-
tributed multi-agent system. “Infotaxis” is a search strategy that uses spo-
radic sensor measurements to determine the source location of materials dis-
persed in a turbulent medium. In this work, we leverage the spatio-temporal
sensing capabilities of a mobile sensing agents to optimize the time spent
finding and localizing the position of the source using a multi-agent collab-
orative search strategy. Our results suggest that the proposed multi-agent
collaborative search strategy leverages the team’s ability to obtain simulta-
neous measurements at different locations to speed up the search process.
We present a multi-agent collaborative “infotaxis” strategy that uses the rel-
ative entropy of the system to synthesize a suitable search strategy for the
team. The result is a collaborative information theoretic search strategy that
results in control actions that maximize the information gained by the team,
and improves estimates of the source position.

Keywords: multi-agent systems, information theory, distributed control

1. Introduction

Nature has been optimizing search strategies in complex uncertain en-
vironments for billions of years. For example, the efficiency of male moths
searching for females is quite remarkable. In spite of a slew of serious ob-
structions in signal detection and processing, the olfactory pheromone system
usually guarantees a successful encounter [1]. Far from the pheromone emit-
ting female, odor plumes consist of sparsely distributed pheromone patches
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due to turbulence [2], leading to rare, intermittent detections [3, 4]. These
and similar search behaviors in biological systems give insight into the mech-
anisms linking perception to action, and for developing more effective search
strategies in general. The understanding of how ants and honeybees locate
and return to their respective colonies when foraging for food has led to new
probabilistic graph search strategies like ant and bee colony optimization
[5, 6]. These successes have further increased interest in developing similar
strategies for autonomous mobile robots for search and rescue applications
like the detection of gas leaks and exploration of buildings on fire [7], tracking
of hazardous chemical plumes [8], and multi-robot exploration of unknown
environments [9, 10].

Existing strategies for detecting, tracking, and localizing gas/odor/radiation
sources with mobile robots include building of flow field maps [11, 12, 13],
estimating concentration gradients [14, 15, 16, 17, 18, 19], and using gradient-
free search algorithms [16, 17]. However, the variation in chemical concen-
trations from a source in a flow environment is heavily dependent on the
Reynolds numbers. In general, gradient-based approaches generally work
better in lower Reynolds regimes since the variation in chemical concen-
trations are generally smoother [20]. However, as the Reynolds number in-
creases, dispersion of the chemical source becomes increasingly dominated by
turbulent mixing which renders many gradient-based strategies impractical
[21, 22, 23, 24, 25].

To address some of these challenges, various bio-inspired strategies based
on bacteria [15, 16, 17], insects [26, 27, 28], and crabs [29] have also been pro-
posed. However, these bio-inspired approaches are mostly ad-hoc, focused on
developing novel sensor technology [30, 27], or are equivalent to coverage and
gradient based search strategies for single robots [16, 17, 26, 27, 28, 20]. Al-
ternatives to these existing strategies include a new class of reactive search
strategies. These strategies do not rely on continuous or smooth concen-
tration gradients and can adapt to past sensory information and action
[4, 11, 31]. The so called “infotaxis” strategy maximizes the information
gain about the location of the source in a turbulent medium [4]. While these
strategies are more sophisticated, they are also computationally expensive
and have almost exclusively focused on adaptive behavior in the context of
single agent search strategies.

The main contribution of this work is the extension of the single-agent
information theoretic search strategy coined as “infotaxis” to a multi-agent
robotic system [4]. As such, we present two collaborative information maxi-

2



mizing search strategies for the multi-robot team and compare their perfor-
mances to the single agent “infotaxis” strategy. The paper is organized as
follows: We briefly summarize the single agent “infotaxis” strategy and lay
out our assumptions in Section 2. We present the multi-agent “infotaxis”
search strategy in Section 3.1 and present our simulation results in Section
4. The comparison and discussion of the single- and multi-agent strategies
is presented in Section 5. We conclude with a summary of our results in
Section 6.

2. Background

The main objective is to extend the single-agent “infotaxis” search strat-
egy presented in [4] to a multi-robot system. We begin by outlining our
assumptions and briefly summarizing the single-agent strategy.

2.1. Assumptions

Given an obstacle free workspace in two dimensions (2D) denoted by W ,
we assume W is discretized into uniform grid cells. A cell is occupied if the
agent, or robot, is located within it and agents are only allowed to move
from their current cell to any of the eight adjacent cells, i.e., up, down,
left, right, and diagonally across the four corners. As such, each agent is
effectively modeled as a single massless point particle with omnidirectional
kinematics. Each robot is equipped with a binary chemical sensor that is
capable to detect the presence (or absence) of chemical at the agent’s current
location in W . We also assume every agent has the ability to localize within
W , i.e., know its position, and can measure the magnitude and direction
of the local flow field at its current location. Lastly, we assume each agent
can communicate with every other member of the team. While inter-agent
information exchange can be done asynchronously, we assume no delays in
communication since the focus of this work is to compare the performance of
the multi-agent strategy with the single-agent system rather than to study
the effects of communication delays on the search strategy.

In general, the expected rate of positive material plume detection in an
environment depends on the spatial distance to the source, the dynamics
of the surrounding flow field, the geometry of the environment, and many
other factors. Due to the complexity of the dispersion dynamics of biochem-
ical and/or radiological material in a turbulent medium, similar to [4], we
model the rate of detecting the presence of a material plume as a Poisson
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distribution. The statistical model for positive material plume detection in
a turbulent medium given in [4] is briefly summarized below.

The mean rate of positive detection at position r for a source located at
r0 in 2D is given by:

Rpr|r0q �
R

lnpλ
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where R is the emission rate of the source, τ is the finite lifetime of the
chemical patch before its concentration falls off the detectable range, D is the
isotropic effective diffusivity of the medium, and V is the mean velocity of the
wind, and K0p�q is the modified Bessel function of the second kind. Similar
to [4], we assume a strong background directional flow that is predominantly
in the �y direction.

Let Ptpr0q denote the estimated probability distribution that describes the
possible locations of the source in W . This probability distribution function
at time t represents the information gathered through a series of uncorrelated
positive sensor measurements or positive odor encounters. In general, Ptpr0q
can be computed using Bayes’ rule:

Ptpr0q �
Pr0pz1:tq³

WPrpz1:tq dr
, (2)

where r denotes a position in the workspace W , z1:t denotes the history of
odor encounters, and Pr0pz1:tq is the likelihood of obtaining such a history
of sensor measurements if the source is located at r0. The expected rate of
positive sensor measurements at any given location in W is a function of the
relative position of the agent with respect to the source. Assuming that the
detection of the plume at every location in W is independent of its neigh-
boring positions, we use Poisson’s law to estimate the number of detections
at each step during the exploration as in [4]. We note that the assumption
of independence for the detection probability holds since the location of the
source is unknown. As such, Pr0pz1:tq is given by an exponential distribution
of the form

Pr0pz1:tq � exp

��
�

» t
0
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�
, (3)

4



where rptq denotes the positions where the agent obtained positive sensor
readings, i.e., detection of the presence of the chemical/plume, and h is the
number of such detections.

2.2. Single-Agent Search Strategy

To maximize the expected rate of information gain for the source location,
the single-agent search strategy in [4] is designed to maximize the expected
reduction of the entropy of Ptprq. Since the entropy of Ptprq is defined as
St � �

³
W Ptprq logpPtprqq dr, the expected change in entropy for an agent

moving from its current location r to another location rj in W at current
time step t is given by:

Ev∆Stpr ÞÑ rjqw � Ptprjqr�Sts � r1 � Ptprjqsrp1 � ρprjqq∆S0 � ρprjq∆S1s.
(4)

The first term in (4) corresponds to the change in entropy should the agent
find the source at the next step. The second term of (4) accounts for the
likelihood that the source is not at rj and calculates the mean value of the
information gained from additional encounters. Under these circumstances,
we consider two possible outcomes: the agent obtains a positive or negative
sensor measurement at the new position. In (4), ρprjq denotes the proba-
bility of detection made at the next step. The expected number of positive
measurements at the new position is calculated based on the current estimate
of Ptprq. Here, the observation model is the expected rate of positive sensor
measurements at position r if the source is located at r0 given by Rprptq|r0q.
Given the estimate of the source location, the expected number of hits at
any location in the workspace is given by:

hprjq �

»
PtprjqRprj|r0q dr0, (5)

where the probability of a single positive detection follows the Poisson law
ρprjq � hpriq expp�hprjqq. In (4), ∆S0 denotes the entropy change of the
probability density function of the source location if the agent receives no
new positive sensor measurements at the next time step as it moves to the
neighboring cell. The change in entropy of the probability density function
if a detection is made at the new position is given by ∆S1. The result is
a search strategy that favors agent motions that maximize the likelihood
of finding the source location. We refer the interested reader to [4] for the
complete details.
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3. Collaborative Multi-Agent Search

The main main objective of this work is to build upon the original work
of [4] and develop a multi-agent collaborative gradient-free search strategy
that locally maximizes the rate of information gain at every step. In general,
the more information one can gather the more exact the estimate for the
source position. Given the sporadic nature of the plume detections by any
given agent, it makes sense to employ a group of agents to more efficiently
explore the workspace to localize the source’s position. In fact, “infotaxis”
as a search strategy can be easily formulated as a multi-agent search strategy
since information gathered by each agent along its trajectory can be shared
with other agents. Given a team of N mobile sensing agents, we present two
collaborative multi-agent “infotaxis” derived strategies: the Simple Collabo-
rative Search and the KL-Based Collaborative Search.

3.1. Simple Collaborative Search

For the simple collaborative search strategy, we assume each agent in
the team individually executes the single agent “infotaxis” search strategy
described in Section 2.2. In this strategy, every agent i maintains an estimate
of the probability distribution that describes the possible source location
which we denote as P i

t prq. Whenever agent i detects the presence of the
material plume, it communicates its coordinates to the rest of the team.
Every agent in the team, i.e., j P t1, . . . , Nu such that j � i, then updates
its own likelihood function with the information provided by the reporting
agent i. In the absence of communication delays or loss of information, the
likelihood function for the source location is identical among all agents in
the team, i.e., Ptprq � P 1

t prq � . . . � PN
t prq. We note that this strategy

naturally allows for asynchronous updates to each agent’s estimate of Ptprq.
To determine their next move, each agent uses their own estimates of the
density function, P i

t prq, to determine the next location to move to and predict
the next locations the other agents in the team will move to.

By increasing the number of agents searching for the source location, one
would expect a decrease in the time needed to find the source and a decrease
in the variance of the estimate of the source position. This is because the
additional number of agents effectively increases the detection rate of the
team. As such, for a team of N mobile sensing agents, the team would explore
less of the workspace, resulting in less time needed to find and estimate
the source position. However, a potential downside is the detection of false
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positives since the team may decide to stop the search once the variance of
the source position estimate drops below a pre-specified threshold.

3.2. KL-Based Collaborative Search

In general, false positives for the source position can be difficult to re-
ject, especially in the absence of complementary sensor data. To minimize
the chances for false positives, we present the KL-based collaborative search
strategy for a team of N mobile sensing agents. Similar to the simple col-
laborative search strategy, the KL-based strategy will also be designed to
maximize the information gained by the team. Different from the simple col-
laborative search strategy, the KL-based strategy will rely on the Kullback-
Leibler (KL) divergence, i.e., the relative entropy, rather than the absolute
entropy of Ptprq.

For every agent i, we assume it obtains its own estimate of the density
function describing the possible source locations without incorporating in-
formation from other agents in the team which we denote P i

t prq. Instead
of relying on the entropy of the team’s source position likelihood density
function, Ptprq, each agent uses the KL divergence to measure the difference
between its source position probability density function and the density func-
tions of the other team members [32]. The KL divergence or relative entropy
between two likelihood functions P i

t prq and P j
t prq is given by:

DpP i}P jq �
¸
rPW

P iprq log
P iprq

P jprq
. (6)

The KL divergence, DpP i}P jq, is a measure of the error in assuming that
some random variable is drawn from a distribution P j when the true distri-
bution is in fact P i.

In this strategy, each agent estimates the probability distribution of the
source positive based on its own sensor measurements. To increase the con-
fidence of each agent’s estimates, each agent derives its control action such
that the relative entropy of the likelihood function for the source position
currently estimated by the other agent, i.e., P j

t prq, and the expected like-
lihood function of the source upon agent i’s next move, DpP j

t }EvP
i
t�1wq, is

minimized. The expected probability function for the source position upon
agent i’s next move is given by

EvP i
t�1w � P i

t prkq � r1 � P i
t prkqsrp1 � ρprkqqSt�1pX � 0q � ρprkqSt�1pX � 1qs

(7)
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where P i
t�1 denotes agent i’s likelihood function of the source position at the

next step. Additionally, St�1pX � 0q and St�1pX � 1q denote the probability
of a negative and positive sensor measurement, respectively, at the very next
step which are calculated based on the current estimate of P i

t .
Equation (7) computes the expected likelihood function based on the ex-

pected number of positive sensor measurements at any of the robot’s neigh-
boring positions/cells. The result is a strategy where every agent tries to
minimize the error of its estimate of the source position by comparing it with
the other agent’s estimates. Different from the simple collaborative search
strategy, the proposed strategy should enable the team to better exploit the
information gathered by the various agents.

4. Simulation Results

In this section we present the simulation results for the single- and multi-
agent “infotaxis” search strategies. The single-agent “infotaxis” strategy
serves as the baseline for comparison.

4.1. Single Agent Search

In the absence of positive sensor measurements, the proposed information
theoretic search strategy favors random exploration of the workspace over
actively seeking the source. However, when an agent obtains a positive sensor
measurement, the new information reshapes the likelihood estimate of the
source location. The updated probability density function guides the agent
to the source along a mostly straight path. This can be seen in Fig. 1 and
Fig. 2 where the likelihood functions for the estimated source position by a
single agent executing the “infotaxis” strategy and the agent’s trajectories
are shown. Fig. 1 and 2 show the simulation results for the single agent in
an environment without and with an external directional flow respectively.

We note that in the presence of an external directional flow, the agent
achieves a good estimate of the possible target position in W after 200 time
steps (see Fig. 2). After 300 time steps, the estimate is good enough for
the agent to successfully localize the source with an acceptable level of confi-
dence. In the presence of an external directional flow, the first positive sensor
measurement provides a great deal of information about the location of the
source. This is especially true when agents have the ability to measure or es-
timate the direction of the background flow, since it allows the agent to limit
its search to the areas upwind. The result is a dramatic initial change in the
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(a) Time Step 0 (b) Time Step 100

(c) Time Step 200 (d) Time Step 300

Figure 1: Estimated likelihood function for the source position in an environment without
any external flows at time steps 0, 100, 200, and 300. In this simulation D � 1, τ � 2500,
R � 100, and a � 1e� 4. The asterisk denotes the source located at p100, 400q. The black
triangle denotes the agent’s current position. The red dots indicate the locations where
the agent obtained a positive sensor measurement.
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(a) Time Step 0 (b) Time Step 100

(c) Time Step 200 (d) Time Step 300

Figure 2: Estimated likelihood function for the source position in an environment with a
directional external flow at time steps 0, 100, 200, and 300. In this simulation D � 1,
τ � 2500, R � 100, and a � 1e� 4. The mean magnitude of the external flow velocity is
V � 1 units per second and the direction is denoted by the arrow. The asterisk denotes the
source located at p100, 400q. The black triangle denotes the agent’s current position. The
red dots indicate the locations where the agent obtained a positive sensor measurement.
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(a) (b)

Figure 3: (a) Sample trajectory of the agent in the environment without (left) and with
(right) the external directional flow. The red dots denote locations where the agent re-
ceived positive sensor measurements. The black triangle denotes the initial position of
the agent and the asterisk denotes the location location of the source. (b) The entropy of
the estimated likelihood function for the source position over time without and with the
external background flow.

estimated probability distribution function describing the source location.
However, the rate of information acquisition by the agent would also drop
dramatically given that subsequent positive measurements contain much less
information as compared to the first positive measurement. This is shown
in Fig. 3b where the entropy of the probability distribution estimated at
each time step by the single agent is shown over time. Since positive sensor
measurements are random, the information gathered in the absence of an
external directional flow decreases linearly over time. In contrast, the pres-
ence of the directional flow results in a faster decrease in the entropy of the
estimated probability distribution.

4.2. Simple Collaborative Search

In contrast to the single-agent strategy, Fig. 4, 5, and 6 show the sim-
ulation results for a group of three agents looking for the plume source in
an obstacle free environment using the Simple Collaborative Search strategy
described in Section 3.1 in an environment without and with an external uni-
directional flow. We note that in the presence of an external unidirectional
flow, the is able to arrive at a more precise initial estimate of the source
location (see Fig. 5a vs. 6a).
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Figure 4: Trajectories of the team’s in the environment without (left) and with (right) the
external directional flow. The red dots denote locations where the agent received positive
sensor measurements. The black triangle denotes the initial position of the agent and the
asterisk denotes the location location of the source. In these simulations D � 1, τ � 2500,
R � 100, and a � 1e� 4. The asterisk denotes the source located at p100, 200q.

Since computation of the expected change in entropy can be costly, these
simulations were performed such that each agent determines its control ac-
tions by only taking into account the change in entropy resulting from its
own action, rather than the actions of the entire team. However, since each
agent maintains an estimate of the likelihood function for the source loca-
tion and updates their estimates based on the positive sensor measurements
obtained by every member in the team, the strategy remains a collaborative
one. We note that while this implementation results in variations between
each agent’s belief distribution of the source position, variations are small
and mostly negligible.

4.3. KL-Based Collaborative Search

Fig. 7 shows the likelihood density function describing the source position
estimated by one agent performing the KL-based collaborative search strat-
egy for a team of two agents. The multi-modal nature of the density function
results from the fact that each agent’s control strategy only relies on each
agent’s estimate of the likelihood function describing the source position. In
the KL-based strategy, individual agents do not fuse information from the
other agents into their estimate of the source position. Rather, the positive
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(a) Time step 50 (b) Time step 100 (c) Time step 140

Figure 5: Estimated likelihood function for the source position in an environment without
an external flow at time steps 50, 140, and 250. In this simulation D � 1, τ � 2500,
R � 100, and a � 1e� 4. The asterisk denotes the source located at p100, 200q. The black
triangle denotes the agent’s current position. The red dots indicate the locations where
the agent obtained a positive sensor measurement.

(a) Time step 50 (b) Time step 100 (c) Time step 140

Figure 6: Estimated likelihood function for the source position in an environment with
a directional external flow at time steps 50; 140; and 250. In this simulation D � 1,
τ � 2500, R � 100, and a � 1e� 4. The mean magnitude of the external flow velocity is
V � 1 units per second and the direction is denoted by the arrow. The asterisk denotes the
source located at p100, 200q. The black triangle denotes the agent’s current position. The
red dots indicate the locations where the agent obtained a positive sensor measurement.

detections, or information, from the other agents are only used to determine
the agent’s next move. As such, the resulting search strategy is one where
control actions by individual agents minimizes the difference between the two
agents’ likelihood functions.

Fig. 8a shows the entropy of the estimated probability distribution for
the location of the source as determined by Agent 1. Since individual agents
do not fuse the sensory information provided by other agents in the team,
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(a) Agent 1: Time Step 100 (b) Agent 1: Time Step 150 (c) Agent 1: Time Step 200

Figure 7: Estimated likelihood function for the source position by Agent 1 in an environ-
ment without an external flow at time steps 100, 200, and 250. In this simulation D � 1,
τ � 2500, R � 100, and a � 1e� 4. The asterisk denotes the source located at p100, 200q.
The black triangle denotes the agent’s current position. The red dots indicate the locations
where the agent obtained a positive sensor measurement.

the resulting decrease in entropy is driven by the control actions performed
by each agent. From Fig. 8a we see that the proposed KL-based strategy
successfully decrease the time needed by the team to localize the source
without resulting in erroneous estimation of the source position.

5. Discussion

As expected, increasing the number of agents effectively decreases the
time needed to localize the position of the source. This is shown in Fig. 8b
where the entropy over time decreases exponentially faster for a multi-agent
team as compared to a single agent. In the case when the source is located
in an environment exhibiting a constant directional flow, agents positioned
upwind of the source would not obtain any positive measurements. Under
these circumstances, agents that are upwind would simply move directly
towards the estimated source position using information gleaned by other
agents located downwind from the source. In such a configuration, we note
differentiation in the agents behaviors. Agents located downwind from the
source tend to focus on exploring the workspace while agents located upwind
exploits the information provided by the downwind agents to seek out the
source. This phenomena can be seen in Fig. 4 where the trajectory of the
agent placed upwind of the source in an environment with a directional flow
consists of a straight line to the estimated source position.
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(a) (b)

Figure 8: (a) Comparison of the entropy of the likelihood function of the source position
for the single agent search strategy described in Section 2 and the entropy of the likelihood
function of the source position as computed by one agent using the described KL divergence
based strategy without an external unidirectional flow. (b) The entropy of the estimated
likelihood function describing the source position as obtained by the single robot and by
the team for the scenarios shown in Fig. 1 and the left panel of Fig. 4, i.e., without wind.

Furthermore, our results also show a significant reduction in the variance
of the estimate of the source position when employing multiple agents ver-
sus a single agent as shown in Fig. 9. This is because the added agents
effectively increases the detection rate of the team as a whole, making the
team more confident in its estimate of the source position. However, this
reduction in uncertainty in the source position estimate can potentially lead
the team to an incorrect estimate of the source location as shown in Fig. 4
where the robots collectively move towards the left side of the workspace.
This is the equivalent to obtaining a false positive detection for the source
position. Fortunately, this erroneous estimate is eventually corrected since
they eventually turn back towards the source. As agents move closer to the
erroneous position estimate, the lack of positive signal cues coming from the
erroneous position in combination with the positive detections originating a
different position estimate eventually drives the team to the correct source
position estimate.

To better understand how the multi-agent collaborative infotaxis search
strategy can lead to erroneous estimates of the source position, we compare
the results for the single and multi-agent system in the absence of a back-
ground directional flow. Fig. 8b shows the entropy of the position likelihood
function for both the single and multi-agent cases. The entropy of the multi-
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(a) Mean Error (b) Single Agent (c) Multi-Agent

Figure 9: (a) Mean error of the source position estimate for the single and multi-agent
systems. (b) Uncertainty of the single agent estimate of the source position as measured
by the norm of the covariance of the source position likelihood function. (c) Uncertainty of
the single agent estimate of the source position as measured by the norm of the covariance
of the source position likelihood function. All panels show data from simulations with an
external unidirectional flow.

agent system decreases more sharply when compared to the single agent
case. This is not surprising since multiple agents can gather more informa-
tion than a single one. However, since the detection of the plume at every
agent’s position is sporadic, one would expect to see temporary increases in
the estimation error of the source position over the duration of a search. This
is particularly true for the single agent case when it is focused on exploring
the workspace rather than actively seeking the source as shown in Fig. 9a.
As the single agent explores the workspace, this behavior results in a tempo-
rary increase in the estimation error of the source position. This temporary
increase in the single agent’s estimation error results in a corresponding de-
crease in its confidence (or increase in uncertainty) of its own estimate of the
position of the source as shown in Fig. 9b. In contrast, in the multi-agent
case, an increase in the estimation error does not result in a decrease in the
team’s confidence of its estimate of the source position. In fact, as Fig. 9c
shows, the team’s confidence in its estimate of the source position remains
high (or the uncertainty remains low) throughout the entire search.

In the multi-agent case, such erroneous estimates are only corrected when
the agents move close enough to the estimated location to verify whether
the source is present or not. This is seen in the trajectories of the mobile
sensing agents in Fig. 4 where the team eventually turns away from the
incorrect position estimate and eventually converges to the correct source
position estimate. Had the team ended its search when the uncertainty
of the position estimation dropped below some given threshold, the team
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would have reported an incorrect estimate for the source position. As such,
we conclude that the simple collaborative search strategy results in team
behaviors that forgoes exploration of the workspace in favor of active source
seeking. However, this trade-off can lead to potential false positives which
results in incorrectly estimating the source position.

Fortunately, the KL-based collaborative search strategy successfully re-
tains the advantages of the multi-agent search without sacrificing estimation
quality. The result is a much more successful cooperative search strategy
compared to the simple collaborative search strategy. While the proposed
KL-based collaborative search strategy is focused on teams of two agents, it
can easily be extended to any team of N ¡ 2 agents. When N ¡ 2, each
agent would then determine the next move by minimizing the joint relative
entropy between its estimate of the likelihood function for the source location
and that of the other team members. It is important note that the KL-based
strategy may result in an agent visiting the same cell in the workspace twice.
While this may result in search inefficiencies, the proposed strategy does
result in better guiding of the agents to regions in the workspace that maxi-
mizes the changes of receiving positive sensor measurements and information
flow.

6. Conclusion

We have presented a comparative study of the single agent information
theoretic search strategy, often referred as “infotaxis”, with two collaborative
multi-agent “infotaxis” inspired search strategies. “Infotaxis” is a strategy
where agents maximize the change in entropy of the likelihood function es-
timate of the position of a plume source [4]. The strategy is a gradient-less
search strategy that has been shown to be robust even in turbulent and
highly stochastic mediums. In this work we showed that the multi-agent col-
laborative “infotaxis” speeds up the search process by leveraging the team’s
ability to obtain simultaneous measurements at different locations in the
workspace. However, we also show a simple extension of the single agent “in-
fotaxis” search strategy can lead to over confidence in the team’s estimates
resulting in incorrect estimates of the source position. This is because in
the multi-agent case, the entropy minimizing strategy overly favors source
seeking to the extent where the team spends too little time exploring the
workspace. Based on our analysis, we presented a variant of the multi-agent
collaborative search strategy where the KL divergence or relative entropy of
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the system was used to derive an appropriate control strategy for the team.
The result is a collaborative information theoretic search strategy that re-
sults in search strategies that better maximizes the information gained by
the team, leading to more accurate estimates of the source position.
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