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The Impact of Diversity on Optimal Control Policies
for Heterogeneous Robot Swarms

Amanda Prorok, M. Ani Hsieh, and Vijay Kumar

Abstract—We consider the problem of distributing a large group
of heterogeneous robots among a set of tasks that require special-
ized capabilities in order to be completed. We model the system
of heterogeneous robots as a community of species, in which each
species (robot type) is defined by the traits (capabilities) that it
owns. In order to solve the distribution problem, we develop cen-
tralized as well as decentralized methods to efficiently control the
heterogeneous swarm of robots. Our methods assume knowledge
of the underlying task topology and are based on a continuous
model of the system that defines transition rates to and from tasks,
for each robot species. Our optimization of the transition rates
is fully scalable with respect to the number of robots, number of
species, and number of traits. Building on this result, we propose
a real-time optimization method that enables an online adaptation
of transition rates as a function of the state of the current robot dis-
tribution. We also show how the robot distribution can be approx-
imated based on local information only, consequently enabling the
development of a decentralized controller. We evaluate our meth-
ods by means of microscopic simulations and show how the perfor-
mance of the latter is well predicted by the macroscopic equations.
Importantly, our framework also includes a diversity metric that
enables an evaluation of the impact of swarm heterogeneity on
performance. The metric defines the notion of minspecies, i.e., the
minimum set of species that are required to achieve a given goal.
‘We show that two distinct goal functions lead to two specializations
of minspecies, which we term as eigenspecies and coverspecies.
Quantitative results show the relation between diversity and
performance.

Index Terms—Heterogeneous multirobot systems, stochastic sys-
tems, swarm robotics, task allocation.

I. INTRODUCTION

ECHNOLOGICAL advances in embedded systems, such
T as component miniaturization and improved efficiency of
sensors and actuators, are enabling the deployment of very large-
scale robot systems, i.e., robot swarms [1], [2]. However, as we
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aspire to solve increasingly complex problems, it becomes ever
more difficult to embed all necessary capabilities into one single
robot type. Our premise is that one single type of robot cannot
cater to all aspects of the task at hand, because at the individual
level, it is governed by design rules that limit the scope of its
capabilities. For example, a larger robot may be able to carry
more powerful sensors, but may be less agile than its smaller
counterpart. Or, we could consider the limited payload of aerial
robots: if a given task requires rich sensory feedback, multiple
heterogeneous aerial robots can complement each other by car-
rying distinct sensors. Instances of information gathering lend
themselves naturally to this problem formulation, with appli-
cations to search, surveillance, environmental monitoring, and
situational awareness [3]-[5].

As we allocate distinct capabilities among robot team mem-
bers, we imply a certain degree of specialization among in-
dividuals [6]-[8]. During this process, heterogeneity becomes
a design feature. The question is, then, how to best design
such systems so that the resulting performance is optimized [9].
However, since there has been very little work on quantitative
measures of diversity in multirobot systems, we still lack the
analytical tools to understand the implications.

In this paper, we contribute toward a general understanding
of heterogeneity by proposing a measure that quantifies the di-
versity of a swarm of robots that is tasked to complete a goal.
Our hypothesis is that the diversity measure must be tied to the
underlying goal function for it to be meaningful. In particular,
we show how for two different goals, we need two different
diversity measures. Toward this end, we consider a concrete
application with the objective of distributing a swarm of het-
erogeneous robots as efficiently as possible among tasks that
require specialized competences. Our methodology enables the
formulation of control policies that take the heterogeneity of the
swarm into account explicitly, and that are capable of adapting
to changes online.

A. Example of the Redistribution Problem

Fig. 1 shows a system comprising ten tasks that can be ser-
viced by means of four distinct traits. The initial trait distribu-
tion is shown at £, and subsequent desired trait distributions are
shown at ¢, t5, and t3. Fig. 2 shows how the distribution of the
traits evolves over time. This sequence is an example of how
a heterogeneous robot system can be controlled to complete a
global goal composed of several subtasks that require a specific
set of capabilities in specific amounts. Also, the example shows
how the solution to the redistribution problem can incorporate
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Fig. 1.
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Four configurations of a system with ten tasks (nodes) and four traits. The trait abundance per task is represented by a bar plot. The edges of this strongly

connected graph represent the possibility of switching between a pair of tasks. The system’s initial distribution is shown at ¢y, with subsequent desired target

distributions at £[; 5 3.
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Fig. 2. Evolution over time of the trait distribution as specified by the dis-
tributions shown in Fig. 1. Each subplot represents one trait, indicating the
distribution of that trait over the set of tasks (for each subplot, task 1 is shown
at the bottom and task 5 at the top). The system’s initial distribution is shown at
to, with subsequent desired target distributions reached at [; 5 31.

temporal constraints or precedence constraints: at an operator
level, we can define arbitrary rules that govern transitions from
one desired trait distribution to another as a function of the sys-
tem’s performance. As an example application, we could con-
sider a spatially distributed information gathering scenario, with
tasks represented by geographically anchored sites: if enough
data have been gathered at one site, a central operator can re-
configure the subsequent desired trait distribution so that robots
distribute to sites that have not yet been sufficiently accounted
for. Which robots are deployed to which sites will depend on
their capabilities and how these capabilities meet the needs that
are anticipated at the sites. We note that the communication
infrastructure required for such an approach is asymmetric: a
centralized operator gathers abstract state information about
the robot swarm, and relays control inputs back to the robots.
This approach ensures algorithmic invariance as we scale the
system [10].

B. Background

Given a set of tasks, and knowledge about the task require-
ments, our problem considers which robots should be allocated
to which tasks. This problem is an instance of the MT-MR-
TA: multitask robots, multirobot tasks problem [11], and can be
reformulated as a set-covering problem that stems from combi-
natorial optimization. This problem is strongly NP-hard [12]. A
greedy algorithm to solve this problem was proposed in [13],
and later adapted for use in distributed multiagent systems [14].
In the latter approach, the robots must compute all possible
“coalitions” (groupings to solve a specific task), and agree on
the best ones. Hence, this algorithm is best applied when the
space of possible coalitions is naturally limited. Market-based
approaches have also been considered to solve task allocation
problems [15]. However, such approaches rely on bidding mech-
anisms that make extensive use of communication, and hence,
scale poorly as the number of robots and tasks increases (not
to mention that they do not address the problem of controller
synthesis). In particular, for systems that are required to adapt
to changing task requirements online, we need to consider al-
gorithms that are efficient and that run on low-cost, resource-
constrained mobile platforms in real time. Hence, we consider a
strategy that is scalable in the number of robots and their capabil-
ities, and is robust to changes in the robot population [16], [17].
An important property of this strategy is its inherently decentral-
ized architecture, with robots modeled to switch stochastically
between tasks (behaviors). The key difference between our work
and previous work is that we formulate our desired state as a dis-
tribution of traits among tasks, instead of specifying the desired
state as a direct measure of the robot distribution. In other words,
our framework allows a user to specify how much of a given
capability is needed for a given task, irrespective of which robot
type satisfies that need. As a consequence, we do not employ op-
timization methods that utilize final robot distributions in their
formulations (which is the case in previous works [16] and [18]).
Also, our work lies in contrast to the methods proposed in [19],
which tackle the single-task robots, multirobot tasks problem.
Our methods explicitly optimize the distribution of traits, and
implicitly solve the combinatorial problem of distributing the
right number of robots of a given type to the right tasks.

C. Contributions

In [20], we first presented a method that distributes a swarm
of heterogeneous robots among a set of tasks that require
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specialized capabilities in order to be completed. Since our
method is based on the derivation of an analytical gradient,
it is very efficient with respect to state-of-the-art methods. The
work in [21] builds on this result, proposing a real-time opti-
mization method that enables an online adaptation of transition
rates. Finally, in [22], we first propose a diversity metric, and
show how the performance of the system relates to this mea-
sure. Apart from consolidating these previous publications, and
assembling all major contributions into one coherent paper, the
present paper provides the following contributions.

1) In our previous work, we considered a single goal, which
required an exact match of the final trait distribution to
the desired trait distribution. Here, we also consider the
formulation of a goal that allows for a minimum match
(and does not penalize superfluous traits). By considering
this additional goal function and extending the scope of
our work, this paper presents a unified framework that al-
lows us to simultaneously solve the allocation problem as
well as the controller synthesis problem for heterogeneous
swarms.

2) We generalize the definition of our diversity metric to
include multiple possible underlying goal functions. We
show that our previous definition of eigenspecies is a sub-
class of the general class of minspecies. Furthermore, we
show that our second goal function leads to an additional
subclass of minspecies, and we refer to this new subclass
as the coverspecies. We analyze the performance of our
system as a function of dedicated diversity measures, one
that is based on eigenspecies, and the other that is based
on coverspecies.

3) We provide a decentralized implementation of our on-
line performance optimization algorithm for robot swarms
that compute the control policy locally. Simulation results
show that our algorithm exhibits a graceful performance
degradation in the case of increasing communication con-
straints.

4) We reformulate our optimization problem as a constrained
optimization problem that guarantees a minimum accept-
able level of performance.

5) We provide updated and new experimental results that
support all novel contributions.

II. PROBLEM FORMULATION

Heterogeneity and diversity are core concepts of this paper.
To develop our formalism, we borrow terminology from the
biodiversity literature [23]. We define our robot system as a
community of robots. Each robot belongs to a species, defining
the unique set of traits that encodes the robots’ capabilities.
In this paper, we consider binary trait instantiations (e.g., the
absence or presence of some sensor/actuator). In practice, con-
tinuous abilities and constraints (e.g., maximum velocity, sens-
ing range, and computing power) can be quantized and one-hot
encoded. Furthermore, we assume that the tasks have been en-
coded through such binary characteristics that represent the skill
sets critical to task completion.
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A. Notation

We consider a community of .S robot species, with a total
number of robots N, and N*) robots per species such that
ZSSZI N() = N.The community is defined by a set of U traits,
and each robot species owns a subset of these traits. A species is
defined by a binary vector q'*) = [qf) ; qés), . qgf)]. We can
then define a S x U matrix Q, with rows q'*) as

0, if species s does not have trait u
QS =
7 1, if species s has trait u
We model the interconnection topology of the M tasks via
a strongly connected directed graph, ® = (£,)) where the set
of vertices V represents tasks {1,..., M} and the set of edges
& represents the ordered pairs (¢, j), such that (i,5) € V x V,
and ¢ and j are adjacent. Edges denote the possibility for robots
to switch between two adjacent tasks. We assign every edge

in £ a transition rate, kf;) > 0, where kf;) defines the average
frequency with which one robot of species s at task ¢ switches

to task j. Here, kg) is a stochastic transition rule. We impose

a limitation on the maximum rate of each edge with k:[(j) <
k(s)

ij,max"®

The distribution of the robots belonging to a species s at time
t is described by a vector x(*) (¢) = [2\* (¢),..., ) (#)]", and
is summarized in a M x S matrix X(¢), which we refer to as
abstract state information. Then, if q(s> are the rows of Q, we
have the M x U matrix Y that describes the distribution of
traits on tasks. For time ¢ this relationship is given by

Y(t) =X(t) - Q. (1)

B. Assumptions

‘We make the following assumptions.

1) The robots have the knowledge of the graph topology: they
are either informed a priori how tasks are interconnected,
or they are capable of estimating the graph topology dur-
ing system initialization.

2) The robots have the knowledge of their current task allo-
cation: they have perfect knowledge of their current lo-
cation within the graph and can potentially broadcast this
information to neighboring robots (i.e., robots completing
nearby tasks).

3) The robots have the knowledge of the target trait distribu-
tion: at least one robot is connected to a remote operator
who sends the new goal, and it is assumed that all robots
achieve consensus on this common goal (they know the
total number of robots per species).

As a specific example, we could consider a set of tasks that
are physically distributed at distinct sites. In our formalism,
the sites are represented by graph vertices. Hence, the robots
must obtain knowledge of the paths that allow them to reach
these sites (assumption 1). This can be done by exploiting maps
that are built a priori and provided to all robots. The transition
rate represents the rate with which a specific path is chosen.
We assume that the maximum rate of each edge kg;?max can
be determined by applying system identification methods on
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the actual system. This value depends on observable factors,
such as typical road congestion or the condition of the terrain.
The robots have noise-free navigation capabilities (assumption
2). Finally, a centralized monitoring system can determine when
the tasks have been sufficiently accounted for, and broadcasts
a new desired trait distribution (assumption 3), triggering the
robots to reconfigure their distribution.

C. System

The initial state of the system is described by X(0), and
hence, the initial distribution of traits at the tasks is described
by Y (0). The time evolution of the number of robots of species
s at task ¢ is given by a linear law

dxi Z k’ji.’L‘i (t) — Z ki”.lﬁz (t) (2)

ar -~ £ e
vil(i,j) €€ vil(i,j)e€

which controls the robots transitioning to and from a task ¢ (with
rates kj; and k;;, respectively), and which exhibits an explicit
feedback structure. Then, for all species s, our base model is
given by

dx(®)
Zt::waw Vsel,....S 3)
where K(*) € RM*M s a rate matrix with the properties
K®'1=0 &)
(s) .o
K;;’ =20 V(,j)e€. ()

These two properties result in the definition
it i #j,(i,j) €€
it i7#7,(6,7) €€ .

if i=j

k(s>

ji o

K® ={o,

i
M (s)
o Zi:l,(j,i)eé’ kl] ’

Since the total number of robots and the number of robots per
species is conserved, the system in (3) is subject to the con-
straints

X' 1=[NO N NGENT (6)
with X = 0 (7)

where > is an element-wise greater-than-or-equal-to operator.

D. Problem Statement

Our aim is to redeploy the robots of each species, distributed
according to X(0) initially, so that a desired trait distribution
Y* is reached. As described in Section 1, we will consider two
goals. A goal consists of a set of admissible trait distributions,
and is described by a function G : N*M>U — Q) where ( is
the set of sets of matrices of size M x U. The goal function G
takes as input a target trait distribution Y* and returns a set of
admissible trait distributions G (Y'*).

We study the following two goal functions in detail.

1) Gi(Y*)={Y|Y* =Y}: This goal is achieved by a

trait distribution that is exactly equal to the target trait
distribution. Thus, the robots must organize themselves

among tasks such that the exact number of traits is met
for each task.

2) Go(Y*) = {Y|Y* < Y}: This goal is achieved by trait
distributions that are equal to or greater than the target
trait distribution. Thus, robots can organize themselves
such that there is an excess of traits for any task.

Finally, the problem consists of finding an optimal rate matrix

K)* for each species s so that the goal is reached as quickly
as possible

K(S)*,T* = argmin T ®)
K() 7
such that X(7%)-Q € G(Y™*). ©)

The solution leads to a robot configuration X (7*) that sat-
isfies (9), subject to (6) and (7). In other words, by computing
optimal rates, we are centrally synthesizing the feedback policy
based on the abstract state information X (0). We will initially
assume that this information can be gathered centrally, and that
the control input K(*)* can be broadcast to the swarm. Later,
in Section V, we see how to infer the abstract state informa-
tion using local estimators, enabling the robots to synthesize the
feedback policy in a decentralized manner.

III. DIVERSITY METRIC

Since the desired state of our system is solely de-
scribed through Y, the corresponding final robot distribution
X (7%) = X* that achieves the goal G(Y*) is not known a pri-
ori. In particular, there may be several X* that satisfy (9)—this
is true for both goals G; and G,. Hence, we pose the question:
Can we infer properties of the species-trait matrix Q that quan-
tify how easy it is to find a solution X* that reaches G(Y*)?
In the following, we show how Q embodies the diversity of the
robot community, and how we can quantitatively evaluate the
diversity to make conclusions about the system’s performance.

A. Definitions

Given an unlimited number of robots per species, it may be
possible to reach any given goal G(Y*) with a subset of the
original robot species (independent of the target trait distribution
Y *). We call the species belonging to an inclusion-wise mini-
mal subset the minspecies, and we refer to the size of this subset
as the minspecies cardinality of the system. More formally, we
introduce the following terminology:

Definition 1 (Minspecies): In a robot community described
by a species-trait matrix Q, a minspecies set is a subset of rows
of Q with minimal cardinality, such that the system can still
reach the goal G(Y*). We represent minspecies by a matrix
Q containing a subset of the original rows of Q such that for
any Y there exists at least one robot distribution X for which
XQ € G(Y™).

Definition 2 (Minspecies cardinality): The minspecies car-
dinality of a robot community is given by the cardinality of
the minspecies set. It is a function Dg : {0,1}%*V — N+
that takes a species-trait matrix Q as input, and returns the
minimum number of rows of Q that are needed to reach G(Y*)
for any Y.
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B. Implementation

In this section, we develop the minspecies cardinality of our
two goals G; and G,. In particular, we demonstrate that for both
goals, the minspecies cardinality is a meaningful quantitative
measure of the constraint in (9).

Proposition 1: The minspecies cardinality with respect to
goal G is

Dg, (Q) = rank(Q).

This implementation of the minspecies cardinality is directly
related to the concept of algebraic independence, and hence, we
use the specialized term eigenspecies (as previously introduced
in [22]).

Proof: The admissible trait distribution set contains a sin-
gle target trait distribution Y* and thus, (9) is equivalent to
Y* = X*Q. The matrix Q' can be rank factorized into the
product of two matrices A and Q such that Q" = QTA-r with
Q containing a subset of the rows of Q [24]. Since Y* =
X*Q = X*AQ there exists a robot distribution X = X* A
for which XQ Y *. Hence, as Q has minimal size (due to
the rank factorization), Q is a minspecies matrix. [ |
Indeed, the rank of Q quantifies the number of noncollinear
species in Q that span the solution space of the equation
X*Q = Y* (with X* unknown):

1) If rank(Q) < S, the system is underdetermined, and an
infinite number of solutions X* will satisfy (9). In other
words, at least one species in the system can be replaced by
a combination of the other species. As the rank decreases,
the redundancy of the community increases.

2) If rank(Q) = S, there is only one solution X* that sat-
isfies (9). In other words, no species in the system can be
replaced by a combination of the other species, and all
species are fully complementary.

As an example, consider matrix

(10)

10
100
01]. .
0 1 1
11
The rank of Q is 2, hence, Dg, (Q) = 2, which is the number
of species in Q.

Proposition 2: The minspecies cardinality with respect to
goal G, is

100
Q=101 1| =A.-Q=
1 11

s
Dg, (Q) = min » _a'® (11)
s=1
s
such thatZa ) = 0and a®) € {0,1}.
s=1

This implementation of the minspecies cardinality is directly
related to the concept of cover sets, and hence, we use the
specialized term coverspecies.

Proof: The admissible trait distribution set for G, contains
all trait distributions that contain at least the specified amount
of traits per task. Equation (9) under goal G, becomes Y* <
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Trait Space Species Space

Go
Uy < G q®
R +
e G G
N
q®
Uy q(l)
Fig. 3. This basic example illustrates how a goal is achieved by two species

q(l) and q(z). Species q(l) only owns trait w1, and species q(2) owns both

traits w and us. The left panel shows how the two species span the trait space.
Goal G; can only be reached by a combination of both species, whereas goal
Gy can be reached by species q?) alone. The same insight can be made by
observing the right panel, which shows the goals in species space. We remind
the reader that the species-trait matrix Q is used to map robot species into trait
space.

X*Q. The matrix Q can be factorized into a product of two
matrices A and Q such that Q < AQ Since Y* < X*Q <
X*AQ (since X* > 0), there exists a distribution X =X*A
for which the goal is reached. If Q has the minimum number
of rows possible, Q is a minspecies matrix, and thus, finding Q
amounts to finding the minimum cover set required to cover all
traits with selected species of Q. |
We consider the same example as above, which is

100 1
Q:Olle.Q:l.[lll].
111 1

The minimum cover set has size 1, hence, Dg, (Q) = 1, which
is the number of species in Q

Fig. 3 illustrates a basic example of how goals G; and G, are
achieved by two species, defined as q'') = [1, 0] and q(*) =
[1, 1]. The left panel shows how the goals occupy the trait space,
and the right panel shows how they occupy the species space.
In particular, the panels illustrate how G, can be reached by
species q'?) alone (see the dashed arrow). Species q' D and q»
both belong to the eigenspecies of G;, whereas q'?) is the only
coverspecies of Gs.

IV. METHODOLOGY

In this section, we describe our methodology for obtaining
an optimal transition matrix K (*)* for each species so that the
desired trait distribution is reached as fast as possible. Initially,
we assume global knowledge of abstract state information X (0)
(i.e, the initial distribution of the robot swarm among tasks).
Later, as we decentralize our method, we show how to build
approximations of X(t), based on real-time local information.

Two general optimization approaches have been consid-
ered so far [16]: convex optimization and stochastic optimiza-
tion. The convex optimization approach requires knowledge
of the desired final robot distribution. However, our problem
formulation specifies a desired trait distribution Y* without
explicit definition of the final robot distribution X*. Fully
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stochastic schemes such as Metropolis optimization have been
shown to produce similar results, but they are not computation-
ally efficient, and are ill-suited to real-time applications. In the
following, we present a differentiable constrained optimization
problem that can be efficiently solved through gradient descent
techniques. Our method explicitly minimizes the convergence
time of K(*), unlike the convex optimization methods presented
in [16], which approximate K(*) with a symmetric equivalent
(forcing bidirectionally equal transition rates between tasks).
Additionally, it is able to find optimal transition rates with only
knowledge of Y* and X(0) (i.e., without knowledge of X*).

A. Optimization Problem

We combine the solution of the linear ordinary differential
equation, (3), with (1) to obtain the solution

S
Y(K““'S),t;Xo) _ ZeKqugs) . q(s).

s=1

12)

To find the optimal transition rates K )X for Gy (details for Gy
are in the appendix), we consider the trait distribution error

E; (K%, 7:Xo) = HY* _ Y(K“-~5>,T;X0)H; (13)
where 7 is the time at which the desired state is reached. The
notation x(()s) is shorthand for x(*) (0). The operator || - ||7 de-
notes the Frobenius norm of a matrix. An objective function
based on E; alone will return transition rates that may lead to
the desired trait distribution quickly, but there is no guarantee
that this state also is a steady state. Additionally, if we compute
the transition rates at the outset of the experiment (without refin-
ing them online), we may wish to ensure that the state reached
at the optimal time 7* remains near constant. Hence, we also
consider the difference in robot distribution

Z H K)r o —eKm
(14)

at time 7 (when the desired trait distribution should be reached)
and time 7 + v. Enforcing a small value for Eo allows us to
guarantee that the robot distribution remains near constant for
arbitrarily long time intervals v. This is possible because our
model in (3) is stable [17], and the difference between the current
robot distribution and the one at steady state can only decrease
monotonically over time. In other words, the trait distribution
corresponding to the steady state of K(*)* gets arbitrarily close
to the distribution reached at 7 as v increases. We can now
formulate our constrained optimization problem as

By (K9

(T4+v) (s
, T, X(] Xy

minimize 7
such that Eq (K(l“'5>,T;X0) < ¢
Ey(K"9, 1:X0) < e
(s) (s)
kij S kij,max

T>0 (15)

which states that an optimal time 7* is found when the final
trait distribution error is smaller than the admissible squared
trait error ¢, and when the difference in robot distributions at
times 7* and 7* + v is smaller than the admissible squared
deviation €3, subject to maximum transition rates kf 5 )m ax- The
smaller we choose €7, the closer the trait distribution at time 7%
will be to the desired trait distribution. The smaller we choose
€, the closer the robot distribution at time 7 is to the steady-
state distribution of K(*)* (and the closer the trait distribution
is to the steady-state trait distribution). While the first constraint
will decrease 7, the second constraint will tend to increase it.

B. Analytical Gradients

There is no closed-form solution to the optimization problem
in (15), hence we resort to numerical techniques. Nevertheless,
we can maximize the efficiency of our computations by finding
the closed-form expression of the gradient, for each of our con-
straints. In the following, for better readability, we will omit the
explicit notation of the parameters of E; (K% 7:X,) and
E» (K(l'“s) ,7; Xo), and write Eq and E,, respectively. Let us
first consider the derivative of E;. By applying the chain rule,
the derivative with respect to the transition matrix K(*) is

OE;  OE; 0K 9KU)r
OKG) — 9K 9K 9K ()
We first compute the derivative of the cost with respect to the
expression eK'*'7
0E;

(16)

_ [Y* Y(K®), 7 XO)} . Hﬁ . q<s>} ’
17)
The derivation of the second element of (16) requires the
derivative of the matrix exponential. Computing the derivative
of the matrix exponential is not trivial. We adapt the closed-form
solution given in [25] to our problem, and write the gradient of
our constraint as

aEl o 1T T aE]_ 1T T
where ® is the Hadamard product, K(*) = VDV ! is the

eigendecomposition of K(*). V is the M x M matrix whose
jth column is a right eigenvector corresponding to eigenvalue
d;,and D = diag(dy,...,dy ). The matrix W (¢) is composed
as follows!

edlt _
W(t) = { (

ed[t

ei)(dit —djt) i3]
i=j

We also need the derivative with respect to parameter 7. This
derivative is computed analogously to the derivative with respect
to K(®) [confer (18)]. We have

S
=y 1TV 1A, VK1

s=1

OB,

or (19)

'Here, we assume that K (%) has M distinct eigenvalues. If this is not the
case, an analogous decomposition of K () to Jordan canonical form is possible,
as elaborated in [25]. We note that for most models of interest, however, this is
rarely the case.
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and

0Eq
HeK) 7
Now let us consider the derivative of the second constraint in
(15). Again, we apply the chain rule to obtain

OE;  OE; 0eK"'T gKO)7
OKG) — 9eKT 9K () 9K (%)

A =V v owW(n). (20)

B OE, 3€K<s><r+u> OK () (7 + V) 21
0eK (m+v) 9K ) (1 + v) OK®) '
The outer derivative is
0By 0E,
86K(“)T - aeK(“)(T+V)
-9 6K(">TX§)S) _ eK(‘”(TJrl/)X[()S) ~X((JS)T. (22)
We apply the same development as in (18) to obtain
IE, -17 T
K V7 [Ayr — As(t+ )]V (23)
with
O0E, 4T
A=V VoW e
and
O0E T
T 2 -1
The derivative with respect to time 7 is analogous
S
8E2 1T S
- = 2 1"Vt Ay — A3 VIKW1.  (26)

For all the above, the derivative with respect to the off-diagonal
elements 45 of the matrix K*), with (i, ) € &, is

8Ez_{8EZ} _{8Ez}
ok~ \OK® [, 7 10K [,

where {-};; denotes the element on row ¢ and column j.

27)

C. Computational Complexity

The overall computational complexity of computing the
gradients of both constraints of our optimization problem is
O(S-M?+S-M?-U). The first part of this complexity is
dictated by the eigenvalue decomposition, which is known to
be O(M?) for nonsparse matrices [26].2 We compute this
decomposition only once per optimization [see (18), where
K& = VDV ], for each optimization of K (). The second
part is dictated by the multiplication of the matrices in (18), for
which the cost is O(M? - U). Globally speaking, the computa-
tion grows linearly with the number of species and traits, and
it grows slightly slower than the cube of the number of tasks.
When studying heterogeneous system, it is indeed a valuable
result that the gradient scales at most linearly with the number

2In the special case where all eigenvalues are distinct, the eigenvalue decom-
position can be reduced to O (M?2-376 log(M)) [27].
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of traits and species in order to allow for the exploration of a
wider range of robot capabilities. Overall, the average time to
compute the gradient for a system with M =8, U = 4, and
S =4 is around 1.35 ms with v =0, and 2.2 ms with v > 0
(the number of parameters to optimize can be as large as 225
in this case, depending on the graph’s adjacency matrix). The
code was implemented in Python using the NumPy and SciPy
libraries, and tested on a 2 GHz Intel Core i7 using a single
CPU.

D. Online Optimization of K*)

Thanks to the analytical gradients developed above, our op-
timization problem can be solved efficiently. Building on this
result, we implement a continuous, online optimization strategy
that allows us to refine the optimal K(*)* as a function of the
current state of the robot system, in real time. In noisy systems,
where the trajectories of individual agents exhibit deviations
from predicted macroscopic trajectories, this strategy inevitably
leads to an improvement of the convergence time. Furthermore,
as seen in our example in Figs. 1 and 2, we may wish to pro-
gram a sequence of desired trait distributions, with autonomous
transition rate updates. The key idea is that by taking the actual
robot distribution into account, an online method can recom-
pute updated optimal transition rates. Practically, we initially
compute K(*)* at time ¢ = 0 to control the system over a finite
period § from ¢t = 0 to ¢t = §. After that period (at time ¢ = J),
we optimize a new value of K(*)* that controls the system for
the next period, as a function of the actual robot distribution that
was encountered at time ¢ = §. This process can be repeated
indefinitely. The value § is called the sampling time. Our on-
line control policy computes the optimal transition rates, and is
rewritten as a function of the robot distribution

K)* (t), 7*(t) = argminT
KG) 7

such that By (K" 7 X(t,)) < &

E, (K9 7:X(t,)) < e
(s) (s)
ki) <k

ij,max
7> 0,

with  t, <t <t, +0

t, € kd,k e N (28)

where ,, is the time at which optimizations happen. For cases
where the optimization time becomes large (implying that &
also becomes large), we need to use a strategy that accounts
for computation delay, such as those presented in [28]. Also,
we note that we can accelerate the computations by setting the
initial values of the present sampling window with optimized
values of the preceding sampling window (i.e., warm start).

V. ROBOT CONTROLLER

The previous sections describe the methods with which we
obtain optimal transition rates K(*)*_ If we assume an archi-
tecture such as described in [10], then the optimization is run
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off-board, centrally, with knowledge of abstract state informa-
tion X (¢) (i.e, the current distribution of the robot swarm among
tasks). In return, the robots only need to receive information on

the optimal transition rates for their species, kf;) We note that
this information is represented by a small number of values (at
most M? values per species, or a much smaller number if the
graph is sparse), and needs to be transmitted to the robots only
at the start of each new redistribution.

Conversely, if the robots run the optimization algorithm on-
board, they need to estimate the abstract state information X (¢)
locally. This knowledge can be obtained through communica-
tion with neighboring robots (which broadcast their current task
allocation). Due to communication constraints, obtaining an ac-
curate representation of X () is often not possible. Hence, our
methods must perform acceptably well, even when these values
are approximate. We choose the following approach for esti-
mating X (¢): the robot locally employs a uniform distribution
to model the allocation of robots for which it does not have
any knowledge. We note that the uniform distribution is merely
a placeholder for more sophisticated models. We choose this
distribution since it represents the model of highest entropy.
Previous work has discussed the violation of the well-mixed
assumption in swarm systems [29], [30]. Indeed, any additional
information that contributes to a more accurate estimate of X (¢)
will allow the performance of the system to approach the opti-
mal solution (for which the exact distribution X (¢) is known). In
order to build more accurate models, we may need to take spatial
correlations into account. For this, we would first need to devise
a model of such higher order moments, and second, populate
this model with the information necessary to construct higher
order moment estimates. It is particularly challenging to do the
latter in a decentralized manner. Previous literature [31]—[33]
proposes solutions to these problems. In particular, the solution
in [33] proposes a decentralized implementation of ensemble
feedback control that relies solely on local interrobot communi-
cation. As robots move from one site to another and exchange
information with other robots they encounter, each robot can
construct its own estimate of the population levels at the var-
ious sites. Such an approach could readily be implemented in
conjunction with our distribution policy, hence accounting for
issues related to nonuniform spatial distributions.

The agent-level control is based on the transition rates k)

ij
encoded by the transition matrix K(*): A robot of species s at

task ¢ transitions to task j according to probability pz(;)
element of the matrix P(*) = K’ AT \where AT is the dura-
tion of one time step. Hence, in order to determine which task the
robot must transition to next, it samples a new task with a proba-
bility according to P(*). This is equivalent to sampling from the
discrete probability distribution P(p,g‘f) e pE;\} ), where i rep-
resents the current task. This procedure is shown in Algorithm 1.
We note that as the robot is transitioning to a new task, it contin-
ues the control loop (i.e., sampling new tasks). Although we do
not explicitly model transitioning time, the resulting behavior is
very close to what is predicted by the macroscopic model in (3),

as is shown later in Section VI. Finally, we note that although we

,1.e., an

Algorithm: Controller(s, M, N1+ Q,Y* § AT).
l: i« GetInitialTask()
t—0
while 1 do
BroadcastAllocation(< s, >)
if modulo(t,0) = O then
A « GetAllocations()
Xiocal < EstimateRobotDistr (A4, N@)-(5)
M)
8: K% Optimize(Xjoear, Q, YX)
9:  PL) = KUxAT
10:  end if
11: t+—t+ AT
12 m~ P )

i

13:  if m # ithen

AN A ol

3

14: Switch to task m
15: 1L—m

16:  end if

17:  Wait AT

18: end while

detail a probabilistic robot controller, our methods are equally
well suited for robots that are deterministically controlled, and
whose overall behavior can be captured by stochastic quantities
(due to random errors and events).

VI. RESULTS

We present results that show the following.

1) Our method successfully achieves the deployment of a
heterogeneous system of robots so that a desired trait
distribution is reached.

2) Our method extends itself to decentralized architectures
(that can approximate certain global quantities locally).

3) We are able to relate the performance to the diversity of
the system.

We evaluate these claims over multiple levels of abstraction.

A. Performance Metric

The degree of convergence to Y * is expressed by the fraction
of misplaced traits. For our two goals, we formulate this as

[Y* - Y[, [max(Y* —Y,0)|
pe, (Y) = o Mg, (Y) = :
2[Y*, ’ 1Y,

Previous work has shown the benefit of validating meth-
ods over multiple levels of abstraction (submicroscopic, mi-
croscopic, and macroscopic) [29]. In this section, we propose
an evaluation of our methods on two levels: macroscopic and
microscopic. Indeed, an efficient way for predicting the behavior
of alarge-scale system of robots is by considering a macroscopic
model, which removes the need of simulating each robot indi-
vidually. This continuous model is derived directly from the or-
dinary differential equation, (3). In order to validate our methods
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at a lower level of abstraction, we also implement a discrete mi-
croscopic model that emulates the behavior of individual robot
controllers. The agent-level control is based on Algorithm 1.
Running multiple iterations of the microscopic model enables
us to capture the stochasticity resulting from our control sys-
tem. In the remainder of this paper, we use A7T" = 0.04 s, unless
stated otherwise.

B. Example

To illustrate our method in more detail, let us consider the
example portrayed earlier, in Fig. 1. The graph is generated
randomly according to the Watts—Strogatz model [34] (with a
neighboring node degree of K = 3, and a rewiring probabil-
ity of v = 0.6; the graph is guaranteed to be connected). The
robot community consists of three species and four traits, and is
defined as

1 010
Q=|1 0 0 1| with X"-1=[150,50,300]".
01 0 1

In this example, N = 500 robots transition among M = 10
tasks. We sample a random initial robot distribution X () with
a majority of traits in use at tasks 1, 2, and 3. We specify a ran-
domly generated desired trait distribution, which is visualized
in Fig. 1 at ¢1. The final robot distribution X (¢;) then serves as
the initial distribution for a subsequent reconfiguration targeting
the trait distribution visualized at 5. As this process is repeated,
it demonstrates how our method can be used to redistribute a
swarm of robots through time so that changing trait requirements
are met. The centralized implementation follows naturally. In
case of a decentralized implementation, the quantities X (¢) can
be approximated locally (and hence decentralized), whereas the
desired trait distributions Y * (¢) are defined centrally, and need
to be transmitted to all robots a priori (before the start of a new
reconfiguration).

To illustrate the performance of our method, we implement
a kinematic point simulator, emulating a swarm of robots at a
microscopic level. The robots move on a two-dimensional plane,
which is 3 m in size, where the tasks are represented by spatially
anchored sites that have a radius of 0.05 m, and are placed along
acircle of radius 1.75 m. We assume that the robots have perfect
knowledge of their positions. The paths between the sites are
defined according to the adjacency matrix of the graph shown in
Fig. 1. The robots travel with an average speed of 0.06 m/s, as
they transition from site to site, with a maximum transition rate

k() ax = 0.02 57", Fig. 4 shows the trail laid by three robots
during the period %, to ¢; of our example scenario, as they travel
from their initial sites to the final site (we show only three out
of the total 500 robot trails to avoid cluttering the plot). We note
that the motion control used for the robots in this simulator is
identical to the one used to control physical robots in a previous
experiment [22].

In order to quantify the performance of our system, we
perform ten runs of our simulator, and evaluate the ratio of
misplaced traits as a function of time. We also evaluate the
performance of the system at a macroscopic level. The results
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Fig. 4. Trail for selected three robots (out of the total 500 robots), one of
each species, for the first 700 s (segment ¢( to ¢ ) in Fig. 1. The robots start at
tasks 1, 2, and 3, respectively, and end at task 4. The earlier the trail, the more
transparent the color.
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Fig.5. Ratio of misplaced traits for the redistribution problem shown in Fig. 1.

The plot shows the macroscopic model as well as the average over ten iterations
of the microscopic model. The shaded area shows the standard deviation.

are shown in Fig. 5. We observe that the trait error decreases
exponentially. Initially, the microscopic and macroscopic mod-
els show good agreement, but as the system approaches steady
state, the stochasticity of the microscopic point simulator forces
the error ratio (which counts absolute differences) to be larger
than 0. Note that systems with slower dynamics and more robots
have a lower noise intensity, and achieve lower average errors
at steady state. This experiment shows that our framework is
able to cope with spatiality and temporal delays, even though
these phenomena are not modeled explicitly in our optimization
problem. Throughout the rest of this section, we will focus on
the core properties of our method, and hence, we simplify our
implementation of the microscopic model by considering instan-
taneous transitions from one task to the next, within nonspatial
configurations.

C. Online Optimization

We evaluate the performance of our online optimization al-
gorithm described in Section IV-D, for both goal functions G;
and G,, and compare it to the macroscopic model. Fig. 6 shows
the ratio of misplaced traits p(Y) over time for a graph with
M = 8nodes, for S = 4and U = 5, and a total number of robots
N = 1000. The initial distribution consists of traits randomly
allocated to one half of the tasks, and the desired distribution
consists of traits randomly allocated to the remaining half of
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Fig. 6. Ratio of misplaced traits over time, in log scale, for a graph with

M = 8nodes. The plot shows the macroscopic model as well as the average over
50 iterations of the microscopic model, with and without online optimization.
The error bars show the standard deviation. (a) Goal function G;, (b) Goal
function Gs.

tasks. Fig. 6(a) considers goal G; (matching the desired trait
distribution exactly) and Fig. 6(b) considers goal G, (match-
ing a minimum desired amount of traits per task). For both
plots, we run 50 iterations of the discrete microscopic model,
with and without online optimization. The online optimization
method was implemented with 6 = 20 - AT". We observe that
the trait error decreases exponentially. Since the online optimiza-
tion method takes the current robot configuration into account,
it produces transition rates that lead to lower errors. Finally,
we observe that goal G, converges faster than G;, due to the
additional degrees of freedom in the system (i.e., traits that can
be allocated to any task in the system, as soon as the minimum
amount is reached). As previously observed in Fig. 5, we see
that here as well, the stochasticity of the microscopic models
prevents the error from continuing to decrease exponentially as
the system approaches steady state.

D. Impact of Diversity

Our aim is to observe the impact of diversity on system
performance. We accomplish this by evaluating the time of
convergence to the desired trait distribution as a function of
our proposed diversity measure, the minspecies cardinality. We
consider a system of M = 10 tasks and S = 6 species, and
generate random species-trait matrices Q (for both G; and G,)
with minspecies cardinality values ranging from 1 to 6. The
system is evaluated on 60 graphs, for each minspecies cardi-
nality value, with a random initial robot distribution and a ran-
dom desired trait distribution per graph. We measure the time
T, thresh at which the system converges to a value fihresh =
2.5% of misplaced traits, and say that one system converges
faster than another if it takes less time for p(Y) to decrease
to finresn- Similar performance metrics have been proposed
in [16] and [17].

Fig. 7 shows the results for the goal G;. Our optimization
method is shown in green. We see that as the minspecies car-
dinality of the system increases, the time to convergence also
increases. Indeed, the size of the solution space of (9) decreases
as the minspecies cardinality increases. In other words, the
more the species are complementary, the harder the system is to

— Ours
['|— Berman et al.

tu,thresh [S]

3 s
Dgl Dgz
(a) (b)
Fig.7. Plot shows the median convergence time evaluated on the microscopic

model, with ¢, - for pipresn = 2.5%, as a function of the minspecies
cardinality, for 60 random graphs per cardinality value. The system has M/ = 10
tasks and S = 6 species. The shaded area shows the 25th and 75th percentiles.
(a) Goal function G, (b) Goal function Gs.

optimize. Also, we compare our method to a benchmark con-
vex optimization approach that stems from [16], denoted in the
latter work as [P1].> We choose this method because it is based
on a similar formalism, and because it has roughly the same
computational complexity as our method. Importantly, though,
its formalism only captures homogenous robot swarms (and is
thus artificially bootstrapped to solve our problem). The results
of this method are shown in red. We see that the performance
does not correlate with the minspecies cardinality. Since the
method does not optimize the reconfiguration for desired trait
distributions, it is input with a potentially suboptimal final robot
distribution (which is exacerbated for low minspecies cardinal-
ity). Our method improves upon this state-of-the-art benchmark
method by 25% for Dg, = 5 and by 46% for Dg, = 1. Fig. 7(b)
shows the results for the goal G,. As before, we see that as
the minspecies cardinality of the system increases, the time to
convergence also increases. We verify that Dg, is a more appro-
priate measure of diversity than Dg, for goal Go by computing
the Pearson correlation coefficient. Using Dg; on this data pro-
duces a correlation of 0.23 (with p-value < 10~*), while D,
produces a correlation of 0.35 (with p-value < 10~*), which is
a 52% increase over Dg, . This validates the use of two distinct
diversity measures for our two distinct goals.

E. Decentralized Online Performance Optimization

To conclude Section VI, we consider the online optimization
of transition rates within a decentralized controller that uses only
local communication to obtain state information about the robot
swarm. We remind the reader that the robots need the knowledge
of abstract state information (i.e., the distribution of the robot
swarm among tasks, X (t,)), at the start of each optimization, see
(28). Hence, if we intend the robots to obtain this information

3This method implicitly optimizes the convergence time by optimizing the
asymptotic convergence rate (of a system of homogenous robots). We adapt the
method to our problem: we minimize the second eigenvalue A2 of a symmetric
matrix S(*), such that 15 (S(*)) > Re(ia (K(#))). Since this method requires
the knowledge of the desired species distribution X * , we artificially bootstrap
the method by computing a random instantiation of X * that satisfies the desired
trait distribution defined by (1). We note that in practical applications, computing
a good instantiation of X * is not trivial.
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Fig. 8. Communication topology, as perceived by robots located at the task
marked in yellow. The robots have knowledge of the trait distribution in their
local neighborhood, which is defined by the hop count. We show the topology
for 0, 1, and 3-hop neighborhoods, where tasks within the neighborhood are
marked in black. Panel (a) shows the actual trait distribution, and panels (b), (c)
and (d) show the estimated uniform distribution of remaining traits among all
tasks that are outside of the local neighborhood. (a) Full, (b) 0-Hops, (c) 1-Hop,
(d) 3-Hops

through local communication channels only, then we need to
understand the effects that different communication topologies
will have on the performance of the system. Our controller is
based on (28), which updates transition rates at time intervals 9.
To emulate communication constraints, we consider incremental
coverage: at the most restricted level, we assume that robots
are only able to communicate with other robots collocated at
the same task; this assumption is incrementally relaxed, as we
increase the communication neighborhood to include robots at
adjacent tasks, within a fixed hop-count relative to the present
task. Fig. 8 illustrates this concept for hop counts of 0, 1, and 3.
For this particular graph, a hop count of 4 reaches full coverage
[shown in Fig. 8(a)].

Fig. 9(a) shows the ratio of misplaced traits as a function of
time, for five different hop counts. Fig. 9(b) shows the distribu-
tion of the data points of the final time step, with inclusion of all
extrema. We observe that, the more we restrict our communica-
tion topology, the higher the error at steady state. We note that
this performance degradation is graceful—as we reduce the size
of our communication neighborhood from 4 hops to 0 hops, the
absolute difference to the best case scenario (4 hops) is 0.1%,
0.4%, 1%, and 3%, respectively, and still converges to a modest
error of 8% for the most restrictive communication radius. The
swarm is able to perform relatively well, even for O hops, be-
cause robots exploit local knowledge available at their current
task node (i.e., a robot knows which robots are collocated at
the same task). Then, as robots switch to new tasks, they re-
estimate the distribution based on their new local neighborhood
(due to the online optimization method). As a result, the trait
distribution progresses toward the desired value, albeit with a
slower convergence rate.
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Fig. 9. (a) Ratio of misplaced traits over time, in log scale. The results are
averaged over 4 iterations for 8 different graphs with M = 8 nodes. The error
bars show the standard deviation. (b) Violin plots with marked median values
for data in the final time step of plot (a).

VII. CONCLUSION

Overall, this work shows how global design variables (such
as diversity) are incorporated at a high level of abstraction (i.e.,
macroscopic level), to produce optimal controllers that can also
be implemented in decentralized form, and that are able to take
realistic constraints into account (such as limited communica-
tion). By considering the specific problem of distributing a het-
erogeneous swarm of robots among a set of tasks with the goal
of satisfying a desired distribution of robot capabilities among
those tasks, we contribute to the understanding of the effects of
diversity in heterogeneous swarms. We propose a formulation
for heterogeneous robot systems through species and fraits, and
show how this formulation is used to achieve an optimal distri-
bution of robots by specifying the desired final trait distribution.
Using this formulation, we propose a diversity metric based on
minspecies that indicates how performance is affected by diver-
sity. We show that the more the robot community is diverse,
the harder it is to optimize: by adding redundant (noncomple-
mentary) species, we increase the size of the solution space
and facilitate the optimization. In particular, we show that this
conclusion is valid for two different goals that require specific
implementations of our diversity metric. The latter implemen-
tations are based on specializations of the minspecies, and are
referred to as eigenspecies and coverspecies.

Our method consists of a constrained optimization problem,
for which we find a computationally efficient solution that is
capable of producing fast convergence times, even for large
numbers of species and traits. Indeed, our computation is fully
scalable with respect to the number of robots, number of species,
and number of traits. Building on this result, we propose a real-
time optimization method that enables an online adaptation of
transition rates as a function of the state of the current robot
distribution. We evaluate our methods by means of microscopic
simulations, and show how the performance of the latter is well
predicted by the macroscopic equations.

Future work will consider the development of methods that
automatically generate desired trait distributions as a function
of underlying real-world problems. We also intend to develop
methods that enable local online estimation of changing desired
trait distributions, as a result of dynamic environments and fluc-
tuating needs.
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APPENDIX

The optimization in (15) is reformulated for goal G, with

E: = || max(Y* - Y,0) ||% (30)

and the derivative [analogous to (17)] is

OeKT

O 2 fmax(Y* —v,0)] - [ -q] . G
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