
IEEE ROBOTICS AND AUTOMATION LETTERS. PREPRINT VERSION. ACCEPTED SEPTEMBER, 2017 1

Optimal Path Planning in Time-Varying Flows
using Adaptive Discretization

Dhanushka Kularatne1, Subhrajit Bhattacharya2 and M. Ani Hsieh3

Abstract—Autonomous marine vehicles (AMVs) are typically
deployed for long periods of time in the ocean to monitor different
physical, chemical, and biological processes. Given their limited
energy budgets, it makes sense to consider motion plans that
leverage the dynamics of the surrounding flow field so as to
minimize energy usage for these vehicles. In this paper, we
present a graph search based method to compute energy optimal
paths for AMVs in two-dimensional (2-D) time-varying flows.
The novelty of the proposed algorithm lies in the use of an
adaptive discretization scheme to construct the search graph.
We demonstrate the proposed algorithm by computing optimal
energy paths using an analytical time-varying flow model and
using time-varying ocean flow data provided by the Regional
Ocean Model System. We compare the output paths with those
computed via an optimal control formulation and numerically
demonstrate that the proposed method can overcome problems
inherent in existing fixed discretization schemes.

Index Terms—Motion and Path Planning, Marine Robotics,
Field Robots, Optimization in Time-Varying Flows, Graph Based
Planning

I. INTRODUCTION

SCIENTIFIC activities such as migration tracking, char-
acterizing the dynamics of plankton assemblages, mea-

surement of temperature profiles, and monitoring of harmful
algae blooms [1] are increasingly being automated using
autonomous marine vehicles (AMVs) which can be either
surface or underwater vehicles. In these applications, AMVs
are often deployed over long periods while operating with
limited energy budgets. As such, researchers have to design
motion strategies that are energy efficient to maximize the
efficacy of these autonomous platforms.

While the high inertia environment of the ocean couples
the environmental dynamics to the marine vehicle dynamics,
it presents a unique opportunity for vehicles to exploit the
surrounding flows for more efficient navigation. As such, there
is a substantial amount of recent work on determining optimal
paths in flow fields. Existing work include using graph search

Manuscript received: May, 09, 2017; Revised August, 10, 2017; Accepted
September, 19, 2017.

This paper was recommended for publication by Editor Nancy Amato upon
evaluation of the Associate Editor and Reviewers’ comments. This work was
supported by the National Science Foundation (NSF) grants IIS-1253917 and
CMMI-1462825.

1Dhanushka Kularatne is with the Scalable Autonomous Systems Lab,
Drexel University, Philadelphia, PA 19104, USA. dnk32@drexel.edu

2Subhrajit Bhattacharya is with the Department of Mechanical Engi-
neering and Mechanics, Lehigh University, Bethlehem, PA 18015, USA.
sub216@lehigh.edu

2M. Ani Hsieh is with the Department of Mechanical Engineering &
Applied Mechanics, University of Pennsylvania, Philadelphia, PA 19104,
USA. m.hsieh@seas.upenn.edu

Digital Object Identifier (DOI): see top of this page.

methods to plan time [2] and energy [3, 4, 5] optimal paths
in static flow fields. In [6], the authors present a tree based
method to compute optimal paths in a time-varying wind field.
The tree like structure, however, results in the expansion of a
large number of nodes which requires significant computation
resources. Eichorn also presented a graph based method, but
it is limited to computing optimal time paths in time-varying
flows [7]. In existing graph based techniques, optimal paths
in time-varying flows are obtained using a fixed resolution in
the discretization scheme for the graph construction. However,
as we will show in this paper, such schemes lead to incorrect
results if this discretization resolution is not chosen appro-
priately. In [8], the authors provide an any-time method to
compute time optimal paths, that seeks to overcome such dis-
cretization errors. The approach utilizes a (N+1) dimensional
grid (N=2 for 2D, N=3 for 3D) to represent the spatio-temporal
workspace. Discretization errors are reduced by using a local
optimizer to find intermediate points on hyper-edges (lines
or/and surfaces) of the grid that minimizes the overall cost.
While this method can be extended to work with an optimal
energy cost function, the local optimizer will then have to
search in a (space x control) space in order to find interme-
diate points that minimize the overall cost. Such a strategy
will significantly increase the computation requirements. In
contrast, our approach solves both optimal energy as well as
optimal time problems and reduces discretization errors by
adapting the discretization resolution locally to better match
the underlying flow dynamics.

Alternatives to graph search techniques include [9, 10] for
computing energy optimal paths in time-varying flows. Since
these methods are based on iterative minimization techniques,
they run the risk of producing paths that are only locally op-
timal. Lolla et al.[11] presented a level set expansion method
to find time optimal paths in time-varying flows. This was
then extended by Subramani et al.[12] to determine the energy
optimal paths from the set of time optimal paths obtained from
the level set method. Similar to many existing approaches,
level set approaches require full knowledge of the flow field
and require significant computational resources for the various
level set expansions at each iteration.

In this paper, we present a graph based approach to com-
pute optimal paths in time-varying flow fields. Advantages
of graph based versus other techniques include: 1) the ease
of incorporating both actuation constraints and holonomic
constraints imposed by static and dynamic obstacles when
compared to full blown optimization schemes (e.g., optimal
control formulations); 2) the ease of implementation when
compared to existing energy optimal path planning strategies

2 IEEE ROBOTICS AND AUTOMATION LETTERS. PREPRINT VERSION. ACCEPTED SEPTEMBER, 2017

in time-varying flows, i.e., iterative techniques, level set meth-
ods; and 3) the ease of extending graph based techniques
to include topological constraints such as homotopy classes
[5, 13, 14] which are relevant for environmental exploration
and monitoring applications. Similar to existing graph based
methods, we represent the environment as a discrete graph and
use a search algorithm to find an optimal path in the graph.
The fundamental difference of our method lies in the adaptive
discretization scheme used in the construction of the graph.
In our method, the discretization resolution is selected locally
according to the flow characteristics at each point. Specifically,
the discretization resolution is selected such that the flow
velocity error remains bounded along an edge. Thus, if the
flow changes rapidly at a point, the resolution will be made
finer, and vice versa. The result is the first graph based method
that uses adaptive discretization to compute optimal paths in
time-varying flows. While this work focuses on optimizing the
path energy cost, the presented method is general enough to
handle other time-dependent cost functions.

The rest of the paper is organized as follows: the problem
formulation is given in section II, our graph based solution is
presented in section III, the simulation results are presented
in section IV, and conclusions and directions for future work
are discussed in section V.

II. PROBLEM FORMULATION

A. Environment and Flow Model

We consider a 2-D aquatic environment W ⊆ R2, subject
to a time-varying flow field Vf : WT 7→ R2, where WT =
W× [t, t] and [t, t] ⊂ R≥0 denotes the time interval under
consideration. As such, for x ∈W and t ∈ [t, t], Vf(x, t) =[
Vf x(x, t), Vf y(x, t)

]T denotes the flow velocity, with Vf x and
Vf y denoting the components of the flow vector in the inertial
frame. The speed of the flow is given by Vf (x, t) = ‖Vf(x, t)‖
and the maximum flow speed encountered in the domain
is given by Vf m = max

x∈W, t∈[t, t]
Vf (x, t). It is assumed that the

flow description is known a priori or a reliable forecast is
available. It is also assumed that, information about static and
dynamic obstacles in the environment is encoded by a function
O : WT 7→ {true, f alse}, where O(x, t) = true indicates an
obstacle at (x, t) and vice versa.

B. Vehicle Model
We assume a holonomic kinematic model for the au-

tonomous marine vehicle (AMV). This is a reasonable as-
sumption when the dimensions of the AMV are small when
compared with the dimensions of the flow structures. Using
this model, the net velocity of the vehicle with respect to the
inertial frame is given by

Vnet(x, t) = Vf(x, t)+Vstill(x, t), (1)

where Vstill is the velocity of the vehicle with respect to the
flow, i.e., Vstill is the “thrust” vector of the vehicle. To achieve
a given velocity Vnet, the AMV speed with respect to the flow
needs to be

Vstill =
√
(Vnet −Vf cosθ)2 +(Vf sinθ)2 (2)

where Vnet = ‖Vnet‖, Vf = ‖Vf‖, Vstill = ‖Vstill‖ and θ is
the angle between Vf and Vnet.We further assume that that
the actuation capability of the vehicle is limited and that its
maximum speed is lower than the speed of the surrounding
flow i.e., Vstill(x, t)≤Vmax <Vf m.

C. Problem Statement
Given a path cost function, the objective is to find a path

Γ : [ts, tg] 7→W that minimizes the total cost of travel between
specified start and goal locations. Thus the problem addressed
in this paper is finding a solution to the following optimization
problem,

Γ
∗ = argmin

Γ

C(Γ) (3)

subject to,

Γ(ts) = xs, Γ(tg) = xg, ts < tg, Vstill(Γ(t), t)≤Vmax

where C(Γ) ≥ 0 is the given cost function, xs and xg are
the desired start and goal positions, and ts, tg ∈ [t, t] are the
start and end times respectively. Note that while ts is specified
explicitly, tg is free.

The cost function C(Γ) can be any function that can be
written as

C(Γ) =
∫

Γ

dc =
∫ tg

ts
E (Γ(t), t)dt (4)

where dc = E (Γ(t), t)dt ≥ 0 is the cost of an infinitesimal
path segment spanning a time interval dt. The incremental cost
dc will be dependent on the flow velocity encountered along
that path segment as well as the control Vstill selected for that
path segment. In this paper we will focus on a cost function
that represents the energy consumed by the AMV. However,
the graph based solution method described in section III can
handle any cost function of the form given in (4).

D. Cost Function
As mentioned before, we consider a cost function that

represents the energy consumption of the AMV. The total
energy consumed by the AMV is considered to be Etotal =
Ehotel +Edrag, where Ehotel is the energy required to operate
the vehicle’s computing and sensor systems independent of
propulsion [15], and Edrag is the energy expended to over-
come drag forces exerted by the fluid. Assuming a constant
power usage Kh by the computing and sensor systems gives
Ehotel =

∫ tg
ts Khdt. The drag force Fd encountered by the AMV

along a path Γ is given by Fd(t) = KdV α−1
still (Γ(t), t) where Kd

is the drag coefficient and α ∈ {2,3, ...}. If α = 2 the drag is
linear, if α = 3 the drag is quadratic, and so on. This leads to
Edrag =

∫ tg
ts KdV α

still(Γ(t), t)dt. Thus, the cost of a path is given
by

C(Γ) =
∫ tg

ts
Kh +KdV α

still(Γ(t), t)dt, (5)

and the cost of a small path segment [dx,dy]T , traversed in
time dt is given by,

dc = (Kh +KdV α
still(Γ(t), t))dt. (6)

where Vstill is given by (2) with Vnet = ‖[dx
dt ,

dy
dt]

T‖. The
implicit assumption made is that the flow velocity Vf remains

KULARATNE et al.: PATH PLANNING IN TIME-VARYING FLOWS 3

constant within dx,dy and dt. Note that, Kh and Kd can also
be thought of as weighting parameters between minimum time
paths and minimum energy paths. If a minimum time path is
required, we could set Kd = 0 and proceed, and vice versa.
If exact energy minimization is required, actual values for Kh
and Kd should be used.

III. METHODOLOGY
A. Preliminaries

We use a graph based approach to find a solution to (3). We
use a discrete graph G = (V , E) to represent the workspace
WT , where V is the vertex set and E is the edge set. Each
vi ∈ V represents a point in WT and is identified by the pair
(xi, ti) where xi ∈W and ti ∈ [t, t]. Each ei j ∈ E represents a
directed edge from vi to v j and has an associated traversal cost
given by (6). In computing the the edge cost, we assume that
the flow velocity along the edge remains constant at Vf(vi),
the flow at the base of the edge. Note that with a little abuse of
notation, we sometimes represent the flow velocity at a vertex
vi with Vf(vi). In this context, a path ΓG from the start vertex
vs = (xs, ts) to the goal vertex vg = (xg, tg) is a sequence of
nodes {v0,v1, · · · ,vN} with v0 = vs and vN = vg and ti < t j for
i < j. The path cost is obtained by summing up the cost of
the edges (vi,vi+1) that make up the path.

Given a start and a goal vertex in the graph, we use the
A* algorithm [16] to find the shortest path in the graph
connecting the vertices. In order to do this, an admissible
heuristic function, h : V → R≥0, is required. For the optimal
energy cost function given in (5), an admissible heuristic
function is given by

h(v) = (Kh +Kdvα
still)

‖xg−x‖
vstill +Vf m

, (7)

where Vstill is obtained by solving, Kd(α − 1)V α
still +

KdαV α−1
still −Kh = 0. Details of this derivation are given in the

Appendix.
In the literature, common practice is to discretize the

workspace uniformly to construct the graph [8, 17]. However,
we believe that during graph construction, the discretization
should change as a function of the underlying flow.

To illustrate the need for adaptive discretization in graph
based methods for planning optimal paths in time-varying
flows, consider the wind-driven double gyre flow model
given by Vf x(x, t) =−πAsin

(
π f (x, t)

)
cos(πy) and Vf y(x, t) =

−πAcos
(
π f (x, t)

)
sin(πy) ∂ f (x,t)

∂x where f (x, t) = εsin(ωt)x2+(
1−2εsin(ωt)

)
x. In this model, A determines the maximum

speed of the flow field, and, ε and ω respectively determine the
amplitude and the frequency of the time-varying oscillation of
the flow field.

Lets consider three cases where we use a time extended
version of the graph search method described in [5] to compute
optimal energy paths. In [5], the spatio-temporal workspace is
uniformly discretized using fixed intervals ∆x and ∆t. In the
first two cases, we select the flow field parameters to be A= 1,
ω = 4π and ε= 0.1. For the third case, we set ε= 0.6 while
leaving the rest of the parameters unchanged. This results in a
maximum flow speed of Vf m = 3.74m/s and Vf m = 6.73m/s for
the first two cases and the third case respectively. However,

in both cases the average flow speed is ≈ 2m/s. Lastly, in all
three cases we set the maximum vehicle speed as Vm = 2m/s.

In case 1, a discretization resolution of ∆x = 0.01m, and
∆t = 0.1s was used for the graph search and the results are
shown in red in Fig. 1(a). It can be clearly seen that the
resulting path does not match the expected path shown in
black. One reason for this discrepancy is due to ∆t being
set too high with respect to ∆x, resulting in an overly slow
edge traversal speed (≈ 0.1m/s). For case 2, ∆t was set to
0.01s so as to increase the edge traversal speed. The results
are shown in Fig.1(b) which is much closer to the optimal
path. Thus, it is clear that the size of ∆x and ∆t has to be
selected according to the local flow speeds to yield better
results. Case 3 further supports this assertion. While the larger
ε value in Case 3 (0.1 vs. 0.6) does not affect the average
flow speed, it results larger spatio-temporal variations within
each region of the flow field. Since the encountered flow
speeds are of similar magnitudes for both cases 2 and 3,
one would expect similar results if the same discretization
resolutions were used. However, Fig. 1(c) shows that the
resulting path computed for case 3 does not match the expected
path. This mismatch is a result of the large spatio-temporal
variations of the flow within the volume of space-time centered
at each vertex, which violates the assumption that the flow
velocity remains constant along an edge of the graph. As such,
appropriate selection of ∆x and ∆t that ensures that the local
flow remains relatively constant, is crucial for obtaining good
results. This is especially true in highly turbulent regions of the
flow field where the discretization resolution has to be made
finer to account for the larger changes over the same space-
time volume. As such, in our approach, we employ an adaptive
discretization scheme that explicitly considers both the local
flow velocity and the local variation of the flow velocity.

B. Approach

1) Adaptive Discretization: The implicit assumption in any
graph based method for computing optimal paths in time-
varying flows is that the flow velocity remains constant along
the edges of a graph. Thus, in order to overcome the issues
highlighted in the example above, the discretization resolution
should be selected to be small enough so that the actual flow
velocity variation along an edge in the graph is small.

Consider an edge ei j = (viv j) from node vi = (xi, ti) to node
v j = (xj, t j) with xi = [xi, yi]

T , xj = [xi +dx, yi +dy] and t j =
ti+dt. We assume the flow velocity at v j can be approximated
by a first order Taylor series expansion vi given by

[
Vf x
Vf y

]∣∣∣∣∣
v j

=

[
Vf x
Vf y

]∣∣∣∣∣
vi

+

[
∂V f x
∂x

∂V f x
∂y

∂V f x
∂ t

∂V f y
∂x

∂V f y
∂y

∂V f y
∂ t

]∣∣∣∣∣
vi

 dx
dy
dt

 .
(8)

Since we assume the flow remains constant along an edge, the
error in the velocity along an edge is given by,

Ve =

[
Vf x
Vf y

]∣∣∣∣∣
v j

−
[

Vf x
Vf y

]∣∣∣∣∣
vi

= ∇̃Vf(vi)

 dx
dy
dt

 (9)

4 IEEE ROBOTICS AND AUTOMATION LETTERS. PREPRINT VERSION. ACCEPTED SEPTEMBER, 2017

(a) Case 1 (b) Case 2 (c) Case 3
Fig. 1. Expected optimal path (in black) vs computed optimal path (in red). Case1: ∆x = 0.01m, and ∆t = 0.1s, results in erroneous results as the selected
discretization does not match the flow speeds encountered. Case 2: ∆x = 0.01m, and ∆t = 0.01s results in a better result. Case 3: Flow changed by setting
ε= 0.6, same discretization as case 2. However, incorrect results because the discretization does not consider the spatio-temporal variation of the flow.

where ∇̃Vf(vi) is the derivative of the flow vector at vi. Thus,
the magnitude of the velocity error due to a displacement dxt =
[dx, dy, dt]T is,

‖Ve‖=
√

Ve
T Ve

=
√

dxtT H(vi)dxt (10)

where H(vi) = ∇̃Vf
T (vi)∇̃Vf(vi) is a symmetric matrix. As

such, it can be shown that,

‖Ve‖=
√

dxtT H(vi)dxt ≤ λmax(vi)‖dxt‖ (11)

where λmax > 0 is the maximum eigenvalue of H(vi). This
maximum error occurs when dxt is parallel to vmax which
is the direction of the eigenvector corresponding to λmax (see
Fig. 2(a)). Thus, to have a relatively constant flow along the
edge, we require,

‖Ve‖ ≤ λmax(vi)‖dxt‖ ≤ p‖Vf(vi)‖ (12)

where 0< p< 1 is a ratio that specifies the magnitude of the
allowable error in terms of the flow at the base of the edge.
To ensure (12) is satisfied by any edge emanating from vi, we
require

‖dxt‖ ≤ dxtmax =
p‖Vf(vi)‖
λmax(vi)

. (13)

Since the edge length limit dxtmax in (13) is computed using
a first order approximation of the error, it will not be correct
for large ‖dxt‖. To address this, we use Newton’s root finding
method along the vmax direction, with vt1 = vi +dxtmax vmax as
the initial point, to find the point vp = (xp, tp) along vmax, that
has a velocity error very close to p‖Vf(vi)‖ (see Fig. 2(b)).
The maximum allowable spatial and temporal displacements
at node vi, dxmax and dtmax are then respectively selected as

dxmax = ‖xp−xi‖, dtmax = |tp− ti| (14)

2) Graph Construction: In case 1 of the illustrative exam-
ple, we showed that the spatial and temporal discretization
given by ∆x and ∆t need to be selected according to the
speed of the flow. If ∆x and ∆t were chosen such that the
resulting edge traversal speed (≈ ∆x/∆t) is either too fast or
too slow, the results would be incorrect. Here, we present
the adaptive Single Time-step Search (aSTS) method which
explicitly considers the local flow speeds, in addition to the
limits established in (14)when selecting the discretization
resolution. Our method ensures that the flow velocities remain
relatively constant along edges, and that the resulting edge

(a) (b)
Fig. 2. (a) Velocity error magnitude surface at vi. The distance of each point
on the surface from vi represents the magnitude of the error in that direction.
The maximum velocity error occurs along vmax. (b) Newton’s root finding
method is used along the vmax direction to find the point vp that has a velocity
error of exactly p‖Vf(vi)‖.

traversal speeds are commensurate with the underlying flow
speeds.

During graph construction, the aSTS method considers the
region of space that could be reached from a given node
vi in a single time step ∆t, under the influence of both the
vehicle actuation and the flow velocity at vi. In 2D space, this
reachable space is demarcated by a circle of radius Vmax∆t
centered at x= xi+Vf(vi)∆t. In the aSTS graph, this reachable
space is represented by a hexagonal lattice of vertices, centered
at x with 2n + 1 vertices along the main axis (see 3(a)).
The m = 3n2 + 3n+ 1 number of vertices in this lattice are
added to the neighbor set N (vi) of vi. For each v j ∈N (vi),
an edge ei j = (vi,v j) and a vertex v j is added to the graph
if O(v j) = f alse, i.e., if the vertex is not obstructed by an
obstacle. All the vertices in N (vi) will have the same time
coordinate t j = ti+∆t. The inter-vertex spacing of the neighbor
lattice is ∆x = Vmax∆t/n. Note that, the Vstill value required
to reach each vertex in N (vi) is the same for any vi due
to the way the graph is constructed, and thus they can be
precomputed.

The time step ∆t at each vi is selected according to the con-
ditions given in (14). The maximum spatial distance between
vi and any v j ∈N (vi) is (Vf +Vmax)∆t (at the farthest point
on the reachable space). From the discussion in section III-B1,
we want ∆t ≤ dtmax and (Vf +Vmax)∆t ≤ dxmax. Thus, for each

KULARATNE et al.: PATH PLANNING IN TIME-VARYING FLOWS 5

(a) (b) (c)
Fig. 3. (a) The reachable space from vi is a circle of radius Vmax∆t centered at x. A hexagonal lattice of vertices is used to represent this space in the graph.
In this case n = 3. (b) In this case (Vf +Vmax)dtmax > dxmax, as such ∆t should be selected as ∆t = dxmax

V f +Vmax
according to (15). (c) Construction of the graph

using the aSTS method. All the vertices reachable within a single time step from the base node are considered as neighbors.

vi, we select ∆t according to the following rule

∆t =

{
dtmax, (Vf +Vmax)dtmax ≤ dxmax

dxmax
V f +Vmax

, otherwise
. (15)

Selection of ∆t according to (15) ensures that the edges added
to the graph at each node expansion, satisfy the conditions
specified in (14). The graph is constructed by repeating this
process at each node expansion (see Fig. 3(c)), and the
node expansion is guided by the A* algorithm where the
heuristic given in (7) is used for sorting nodes. Note that in
highly turbulent regions of the flow, ∆t will be set to a very
small value, which will result in a very fine spatio-temporal
discretization. The aSTS method guarantees that,

1) maximum velocity error along any edge is less than
pVf (vi),

2) the net vehicle speed along any edge is commensurate
with the flow velocity at the base of the edge.

Note that, the only user selected parameters in this method are
the edge velocity variation limit p and the number of neighbors
along the main axis of the lattice n. All discretization levels are
computed automatically based on these values during runtime.

The pseudo code for the aSTS method is given in Algorithm
1. The getLatticeVel(Vmax,n) function (line 2), precomputes
the Vstill values required to reach each node in the lattice. All
un-expanded nodes are stored in a priority queue (Q) which is
sorted using the f = cost+heuristic values, and it is initialized
with the start node. Parent of each node points to the vertex
through which the least cost path from the start vertex arrives
at the current vertex. The start vertex is initialized with a
null parent, and the least cost path to the goal is constructed
by successively stepping back through the parents starting
from the goal node (line 9). Function getMaxErrDir(vi) (line
12) returns the maximum error direction vmax at node vi,
and getDispLimits(vi,vmax, p) returns the point vp along vmax
which gives a velocity error of p∗Vf (vi). If v j has already been
added to the graph (line 25), its cost and parent are updated
if the vertex can be reached with a lower cost through the
current vertex vi (line 27). When searching the graph to find
if v j is already in the graph, any node vk with (tk− t j)< ∆t/2
and ‖xk− xj‖ < ∆x/2 is considered to be the same as v j. If
v j is not in the graph, its cost and parents are updated (line
32) and added to the graph. The processes is repeated until
the goal is reached.

3) Complexity Analysis: In our analysis, we assume that
the priority queue Q is implemented as a min-priority queue

using a heap data structure. Thus, for a queue of length
nq, each of the extractMin(), update(q j), & insert(q j) op-
erations has a worst case running time of O(lognq). We
also assume that all other value assignment operations can
be performed in constant time. Thus, we only consider the
extractMin(), update(v j), & insert(v j) operations contained
inside the while loop, in our analysis since all other operations
can be done in constant time. The adaptive discretization
steps in lines 12 and 13 are also considered as constant time
operations since they are independent of the number of node
expansions. However, it should be noted that while this step is
not the dominating factor in the computational complexity, it
does add a computational overhead when compared with fixed
discretization methods.

Lets assume that N nodes are expanded by the algorithm
to find a path Γ, and m neighbors are considered at each
node, i.e., m = ‖N (vi)‖. Thus, for each node expanded, the
extractMin() operation is performed exactly once, and one of
the update(v j) or insert(v j) operations is performed at the
most m times. Furthermore, in the worst case, there are Nm
number of nodes in the priority queue Q. As such, the worst
case running time of the algorithm is O(Nm logNm).

Since, nodes in Q are sorted using their f values, N will
depend on the efficacy of the heuristic in (7), and also on the
number of vertices created during graph construction. Smaller
p values will result in smaller ∆t values, which will increase
the number of segments/steps in a path. Furthermore, increas-
ing n will increase the number of neighbors (m) considered
at each step. Thus, decreasing p and increasing n will result
in increased running times, while decreasing path error. For a
given p and n, we can obtain an upper bound for the number
of segments (np) in the path as np ≤ (t − ts)/∆tmin, where
∆tmin is the smallest timestep computed using (14). Thus in
the worst case, where the heuristic = 0, and all nodes have to
be expanded before getting to the goal, the maximum number
of nodes expanded is N = mnp , in which case, the worst case
running time is O((np +1)mnp+1 log(m)).

IV. SIMULATIONS

In this section the performance of the aSTS method is
verified in simulations. In all simulations, the path parameters
were set as Kh = 0.0005, Kd = 1 and α = 2 (linear drag model),
and all simulations were run on a Core I-7 3.4GHz PC with
16GB of RAM.

6 IEEE ROBOTICS AND AUTOMATION LETTERS. PREPRINT VERSION. ACCEPTED SEPTEMBER, 2017

Algorithm 1: Adaptive Single Timestep Search (aSTS)
Input : Start vs = (xs, ts), Goal xg, p, n, Vmax, Flow Vf
Output: Optimal cost path Γ

1 Q =∅, G =∅
2 Vlattice = getLatticeVel(Vmax,n)
3 vs. f = 0, vs.cost = 0 vs.parent =∅
4 Q.insert(vs), G .addNode(vs)
5 while (Q! =∅) do
6 vi = Q.extractMin()
7 vi.expanded = true
8 if (‖xi−xg‖< δx) then // goal is reached
9 Γ = retrievePath(vi)

10 break;
11 end
12 vmax = getMaxErrDir(vi)
13 vp = getDispLimits(vi,vmax, p)
14 dxmax = ‖vi.x− vp.x‖
15 dtmax = |vi.t− vp.t|
16 ∆t = getDt(dxmax,dtmax,V f ,Vmax)
17 for j = 1 to m do // for each neighbor
18 xj = xi +[Vf(vi)+Vlattice(j)]∆t
19 t j = ti +∆t
20 v j = (xj, t j)
21 if O(v j) then // check obstacles
22 continue
23 end
24 cost = [Kh +Kd‖Vlattice(j)‖α]∆t
25 if v j ∈ G then
26 if (v j.cost > vi.cost + cost) then
27 v j.updateVertex(vi,cost)
28 G .addEdge(viv j), Q.update(v j)
29 end
30 else
31 v j.heuristic = getHeuristic(v j,xg)
32 v j.updateVertex(vi,cost)
33 Q.insert(v j), G .addNode(v j), G .addEdge(viv j)
34 end
35 end
36 end
37 return Γ

The accuracy of the paths computed by the aSTS method
was evaluated by comparing it against a path obtained by solv-
ing the corresponding optimal control problem. The optimal
control problem involves minimizing the path cost given in
(5), subject to the kinematic model in (1), and the constraint
Vstill ≤ Vmax. This results in a two point boundary value
problem which was solved using the indirect shooting method.
This approach solves the governing differential equations for
a succession of initial directions until the goal position is
reached. The result from the shooting method was refined
using MATLAB’s BVP solver. Let Γ∗ : [ts, tg] 7→W be the
reference path obtained from the optimal control formulation
of the problem, and let Γ : [ts, tg] 7→W be the path computed
by the proposed method. The mean error (mE) between Γ∗

and Γ, defined by

mE =
∫ tg

ts

‖Γ∗(t)−Γ(t)‖
tg− ts

dt, (16)

was used to evaluate the relative accuracy of computed paths.
One could alternatively use the path cost to compare the
results. However, the computed path cost is a function of
the discretization resolution and thus does not provide a good
measure for path quality. For example, a path with only two

intermediate nodes might have better cost because it ignores
the flow variation at intermediate points along the path.

A. Simulations using the double-gyre flow model
The aSTS method was first used to compute an optimal

path in a flow field described by the double-gyre flow model.
Specifically, case 3 of the illustrative example in section III-A
was considered where it was required to compute an optimal
path between xs = [0.2, 0.2]t and xg = [0.4, 0.8]t in a flow
with parameters A = 1, ω = 4π and ε = 0.6. The maximum
flow velocity encountered in the region was Vf m = 6.73m/s,
and as such the maximum vehicle speed was set at Vmax =
2m/s. The number of neighbors along the main axis of the
neighbor lattice was set at n = 3 and velocity error threshold
was set at p = 0.1 , i.e., the flow velocity variation along
any edge in the graph will be less than 10%. Fig. 4 shows
the time evolution of the path computed by the aSTS method
against that of the reference path computed using the optimal
control formulation. It can be seen that the paths match very
closely, and specifically the mean error of the computed path
is just 0.01m. Furthermore, the aSTS method has been able
to overcome the problems associated with manual selection
of discretization resolution that was seen in case 3 of section
III-A. In the aSTS method only n and p has to be set by the
user and the discretization levels are computed automatically
to suit the underlying flow.

B. Simulations using ocean flow data
The aSTS method was also used to compute optimal paths

in an ocean environment. Flow data generated by the Regional
Ocean Model System (ROMS) for the Santa Barbara Bay
area off the coast of southern California were used in these
simulations. The Southern California Coastal Ocean Observ-
ing System (SCCOOS) generates these hourly ocean current
forecasts everyday and each forecast is for 72 hours [18]. The
data generated on July 7 and July 8 2016 were used for the
simulations. The ROMS data has a 3km× 3km× 1hr spatio-
temporal resolution and linear interpolation was used to obtain
flow velocities at intermediate coordinates. The maximum flow
speed was Vf m = 0.73m/s and as such Vmax was selected
to be 0.5m/s. As in the previous case, the parameters were
set at n = 3 and p = 0.1. Fig. 5 shows the comparison
between the reference path and the path computed using the
aSTS method. The reference path computed using the optimal
control formulation had a cost of 3775J and it took 12144s to
converge onto the best solution. It can be seen that the paths
match closely with a mean error of mE = 169m. The path
cost obtained from the aSTS method was 4243J. As before
Kh = 0.0005 and Kd = 1 were used for the simulations, and
as a result, more prominence is given to reducing the energy
expended to overcome drag forces. Therefore, the computed
path tends to follow the flow as much as possible in order
to reduce relative motion between the flow and the vehicle.
This leads to the loop structure that can be observed in
Fig. 5. The video for this simulation trial can be found on
https://youtu.be/6R0RevaAMmY.

Table I shows the results of the aSTS method for different
p and n values. It shows that increasing n while keeping

KULARATNE et al.: PATH PLANNING IN TIME-VARYING FLOWS 7

(a) t=0.18s (b) t=0.28s (c) t=0.37s (d) t=0.46s
Fig. 4. Comparison of the optimal path computed using the aSTS method (red) with the path computed using an optimal control formulation (black), in a
double-gyre flow. The parameters for the aSTS method were set at n = 3, p = 0.1. Mean path error for the aSTS path is mE = 0.01m.

(a) t=12.2hrs (b) t=24.7hrs (c) t=37.2hrs (d) t=49.7hrs
Fig. 5. Comparison of optimal path computed using the aSTS method (red) with the path computed using the optimal control formulation (black) in an ocean
environment. The parameters for the aSTS method were set at n = 3, p = 0.1. Mean path error for the aSTS path is mE = 169m.

p constant (paths 1-3) results in more accurate paths at the
expense of running time. Similarly, decreasing p while keeping
n constant (paths 5-3) also results in more accurate paths
at the expense of running times. Note that the running time
is only a fraction of the total path duration for each case.
Table II shows the results for paths computed using a fixed-
grid discretization scheme. In this fixed discretization method,
the user has to specify ∆x and ∆t, the spatial and temporal
discretization resolutions, as well as nHx and nHt, the number
of spatial and temporal hops considered as neighbors at each
expansion. In the results shown in Table II, all paths were
computed with ∆x = 150m and nHx = 3 so that it has the
same spatial discretization as the mean resolution obtained
for path 3 of the aSTS method. It can be seen that Path 1
has a similar accuracy as path 3 of the aSTS method, and
the computation is faster. However, the results obtained from
the fixed discretization method depends heavily on the user
defined discretization resolution. For example, a slight increase
in the temporal resolution (path 2) results in a less accurate
path. The results degrade further when the number of temporal
neighbors considered are decreased (path3). Thus, increased
accuracy cannot be guaranteed even if the discretization is
made finer with such fixed discretization schemes. However,
accuracy is guaranteed to improve in the proposed aSTS
method by simply increasing n and decreasing p.

V. CONCLUSIONS

In this work, a graph based approach to optimal path
planning in time-varying flows was presented. The method
uses an adaptive discretization scheme that is based on the
spatio-temporal variation of the underlying flow field. While
only optimal energy paths were considered in this paper, the
method is general enough to handle other cost functions in
time-varying flows. The correctness of the computed paths

TABLE I
RESULTS FOR THE ASTS METHOD FOR DIFFERENT p AND n VALUES.

Path 1 2 3 4 5

p 0.1 0.1 0.1 0.2 0.3

n 1 2 3 3 3

mErr (m) 6426 595.3 169.2 656.3 1095

cost (J) 9200 5284 4243 4234 4179

running time (s) 385 1074 2009 687 364

path duration (s) 182800 176200 1782000 179400 180600

TABLE II
RESULTS FOR THE FIXED DISCRETIZATION METHOD.

Path 1 2 3

∆t 150 100 100

nXt 7 10 5

mErr (m) 226.5 326.0 1256

cost (J) 4191 4236 7195

running time (s) 1399 2641 816

path duration (s) 180000 180600 176000

were verified in simulations, by comparing them with paths
computed using an optimal control framework. Furthermore, it
was shown that the method was able to overcome some issues
associated with the use of fixed discretization resolutions in
existing methods.

Similar to existing work on path planning in flows in litera-
ture, the presented method assumes that accurate flow velocity
forecasts are available for the computation of optimal paths.
However, the ocean current forecasts provided by the CORDC
databases, the regional ocean model systems (ROMS), and/or

8 IEEE ROBOTICS AND AUTOMATION LETTERS. PREPRINT VERSION. ACCEPTED SEPTEMBER, 2017

other numerical models are often uncertain [15]. Thus, in order
for these graph search methods to be used with such uncertain
forecasts, the effect of noise on the computed optimal paths
need to be investigated, and this is a direction for future work.

Furthermore, it seems plausible that optimal paths computed
with a higher p value could be re-used to compute optimal
paths with increasingly lower p values without exploring the
complete environment again. Such an implementation will
make the aSTS method a candidate for any time path planning
[19] and this is research direction being investigated.

REFERENCES

[1] J. Yuh, G. Marani, and D. R. Blidberg, “Applications
of marine robotic vehicles,” Intelligent Service Robotics,
vol. 4, no. 4, p. 221, Jul 2011.

[2] B. Garau, A. Alvarez, and G. Oliver, “Path planning of
autonomous underwater vehicles in current fields with
complex spatial variability: an a* approach,” in Robotics
and Automation, 2005. ICRA 2005. Proceedings of the
2005 IEEE International Conference on, April 2005, pp.
194–198.

[3] T.-B. Koay and M. Chitre, “Energy-efficient path plan-
ning for fully propelled auvs in congested coastal wa-
ters,” in OCEANS - Bergen, 2013 MTS/IEEE, 2013, pp.
1–9.

[4] D. Rao and S. B. Williams, “Large-scale path planning
for underwater gliders in ocean currents,” in Australasian
Conference on Robotics and Automation (ACRA), Syd-
ney, 2009.

[5] D. Kularatne, S. Bhattacharya, and M. A. Hsieh, “Time
and energy optimal path planning in general flows,” in
Proceedings of Robotics: Science and Systems, AnnAr-
bor, Michigan, June 2016.

[6] A. Chakrabarty and J. Langelaan, “Uav flight path plan-
ning in time varying complex wind-fields,” in 2013
American Control Conference, June 2013, pp. 2568–
2574.

[7] M. Eichhorn, “Optimal routing strategies for au-
tonomous underwater vehicles in time-varying environ-
ment,” Robotics and Autonomous Systems, vol. 67, pp.
33 – 43, 2015.

[8] M. Otte, W. Silva, and E. Frew, “Any-time path-planning:
Time-varying wind field + moving obstacles,” in 2016
IEEE International Conference on Robotics and Automa-
tion (ICRA), May 2016, pp. 2575–2582.

[9] D. Kruger, R. Stolkin, A. Blum, and J. Briganti, “Optimal
auv path planning for extended missions in complex,
fast-flowing estuarine environments,” in Robotics and
Automation, 2007 IEEE International Conference on,
April 2007, pp. 4265–4270.

[10] J. Witt and M. Dunbabin, “Go with the flow: Optimal auv
path planning in coastal environments,” in Australasian
Conference on Robotics and Automation (ACRA), 2008.

[11] T. Lolla, P. F. J. Lermusiaux, M. P. Ueckermann, and P. J.
Haley, “Time-optimal path planning in dynamic flows
using level set equations: theory and schemes,” Ocean
Dynamics, vol. 64, no. 10, pp. 1373–1397, 2014.

[12] D. N. Subramani and P. F. Lermusiaux, “Energy-optimal
path planning by stochastic dynamically orthogonal
level-set optimization,” Ocean Modelling, vol. 100, pp.
57 – 77, 2016.

[13] S. Bhattacharya, M. Likhachev, and V. Kumar, “Topo-
logical constraints in search-based robot path planning,”
Autonomous Robots, vol. 33, no. 3, pp. 273–290, October
2012.

[14] S. Kim, S. Bhattacharya, and V. Kumar, “Path planning
for a tethered mobile robot,” in Proceedings of IEEE
International Conference on Robotics and Automation
(ICRA), Hong Kong, China, May 31 - June 7 2014.

[15] V. Huynh, M. Dunbabin, and R. Smith, “Predictive
motion planning for auvs subject to strong time-varying
currents and forecasting uncertainties,” in Robotics and
Automation (ICRA), 2015 IEEE International Conference
on, 2015, pp. 1144–1151.

[16] T. H. Cormen, C. E. Leiserson, R. L. Rivest, and C. Stein,
Introduction to algorithms, 2nd ed. MIT Press, 2001.

[17] D. R. Thompson, S. Chien, Y. Chao, P. Li, B. Cahill,
J. Levin, O. Schofield, A. Balasuriya, S. Petillo, M. Ar-
rott, and M. Meisinger, “Spatiotemporal path planning
in strong, dynamic, uncertain currents,” in Robotics and
Automation (ICRA), 2010 IEEE International Conference
on, May 2010, pp. 4778–4783.

[18] Regional ocean model system (roms) model output. [On-
line]. Available: http://www.sccoos.org/data/roms-3km/

[19] E. A. Hansen and R. Zhou, “Anytime heuristic search,”
J. Artif. Int. Res., vol. 28, no. 1, pp. 267–297, Mar. 2007.

APPENDIX

To find an admissible heuristic function for the cost function
given in (5), we assume that ideal flow conditions exist
between the node vi and the goal node vg, i.e., we assume
that the flow is always directed from xi to xg and that the
flow speed is at its maximum possible value Vf m. Thus from
(2), Vnet =Vstill +Vf m since θ = 0, and the corresponding travel
time between xi and xg is ∆t = ∆x/Vnet where ∆x = ‖xg−xi‖.
Using (6), the cost of travel from xi to xg is,

Cig(Vstill) = (Kh +KdV α
still)

∆x
Vstill +Vf m

. (17)

The derivative of (17) is given by,

dCig

dVstill
=

Kd(α−1)V α
still +KdαV α−1

still −Kh

(Vf m +Vstill)2 ∆x. (18)

Thus, an extremal of Cig satisfies the polynomial,

Kd(α−1)V α
still +KdαV α−1

still −Kh = 0 (19)

It can be shown that d2Cig

dV 2
still
≥ 0. Thus, Cig is minimized when

Vstill satisfies (19). Therefore, the admissible heuristic function
is given by,

h(vi) = (Kh +Kdvα
still)
‖xg−xi‖
vsel +Vf m

(20)

where Vstill is given by the solution to (19).

http://www.sccoos.org/data/roms-3km/

	INTRODUCTION
	PROBLEM FORMULATION
	Environment and Flow Model
	Vehicle Model
	Problem Statement
	Cost Function

	METHODOLOGY
	Preliminaries
	Approach
	Adaptive Discretization
	Graph Construction
	Complexity Analysis

	SIMULATIONS
	Simulations using the double-gyre flow model
	Simulations using ocean flow data

	CONCLUSIONS
	Appendix

