
Distributed Assembly with Online Workload
Balancing and Visual Error Detection and
Correction

James Worcester, M. Ani Hsieh, and Rolf Lakaemper

Abstract We consider the assembly of a three dimensional (3D) structure by a team
of heterogeneous robots capable of online sensing and error correction during the
assembly process. We build on our previous work and address the partitioning of
the assembly task to maximize parallelization of the assembly process. Specifically,
we consider 3D structures that can be assembled from a fixed collection of hetero-
geneous tiles that vary in shapes and sizes. Given a desired 3D structure, we first
compute the partition of the assembly strategy into Na sub-components that can be
executed in parallel by a team of Na assembly robots. The assembly robots then
perform online workload balancing during construction to minimize assembly time.
To enable online error detection and correction during the assembly process, mo-
bile robots equipped with visual depth sensors are tasked to scan, identify, and track
the state of the structure. The result is a cooperative assembly framework where
assembly robots can balance their individual workloads online by trading assembly
components while scanning robots detect and reassign missing assembly compo-
nents online. We present the integration of the planning, sensing, and control strate-
gies employed in our framework and report on the experimental validation of the
strategy using our multi-robot testbed.

1 Introduction

Distributed autonomous assembly of general two (2D) and three dimensional (3D)
structures is a complex task requiring robots to have the ability to: 1) sense and
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manipulate assembly components; 2) interact with the desired structure at all stages
of the assembly process; 3) satisfy a variety of precedence constraints to ensure as-
sembly correctness; and 4) ensure the stability and structural integrity of the desired
structure throughout the assembly process. While the distributed assembly problem
represents a class of tightly-coupled tasks that is of much interest in multi-robot
systems (Chaimowicz et al, 2001), it is also highly relevant to the development of
next generation intelligent, flexible, and adaptive manufacturing and automation.

The execution of tightly-coupled tasks by multi-robot teams has mostly focused
on cooperative grasping and manipulation (Mataric et al, 1995; Fink et al, 2008).
These works, however, do not address the challenges imposed by the need to sat-
isfy specific precedence constraints during assembly process. These constraints are
especially important in applications like automated palletizing, construction, manu-
facturing, infrastructure repair and maintenance since automated strategies must en-
sure correctness as well as stability of the resulting structures. While there has been
significant focus in micro/nano-scale assembly (Klavins, 2007; Evans et al, 2010;
Matthey et al, 2009; Rai et al, 2011), automated macro-scale assembly is gaining in-
creased attention. Recent work in this area includes (Petersen et al, 2011; Yun et al,
2009; Yun and Rus, 2010; Stein et al, 2011; Heger and Singh, 2010; Lindsey and
Kumar, 2012).

In Werfel and Nagpal (2008) and Petersen et al (2011), assembly is achieved
through a combination of robots with limited sensing and actuation capabilities and
assembly components capable of storing and communicating location information
with the robots. The focus of these works is on designing a set of consistent local
attachment rules that ensure completeness and correctness of the assembly, while
obeying local constraints between pieces and avoiding unrecoverable situations. In
Yun et al (2009); Yun and Rus (2010); Stein et al (2011), a workload partitioning
strategy is presented to enable a team of robots to achieve parallel construction at
the macro scale. The approach maintains a Voronoi decomposition of the structure
based on the assembly robots’ locations by minimizing the total difference in the
masses of the assembly components in each cell. Failures of robots, ordering con-
straints, and changes to an existing structure are also addressed.

Despite these successes, significant challenges still remain. First, existing macro-
scale assembly strategies often reduces to a serialization of the assembly procedure
despite employing multiple robots (Petersen et al, 2011; Lindsey and Kumar, 2012).
While this ensures correctness of the resulting structure and safe execution, it can
significantly hamper productivity by not exploiting parallelization in the assembly
process. Second, existing strategies often rely on external sensors for localizing the
assembly components (Lindsey and Kumar, 2012; Yun and Rus, 2010), i.e., station-
ary sensors mounted in the workspace. While such a strategy may be feasible for
small work cell volumes, such an approach may be challenging for large workspaces
since it would be difficult to provide enough coverage and accurate localization.

In this work, we present a cooperative assembly strategy where the objective is
to coordinate a heterogeneous team of robots to collaboratively assembly a specific
class of 3D structures. Specifically, we consider the partitioning of the heteroge-
neous robot team into assembly and scanning robots. Assembly robots will be tasked
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to assembly the desired 3D structure using a collection of assembly components of
varying shapes and sizes. Building on our previous work Worcester et al (2011), we
determine an allocation of the assembly task into subcomponents to enable parallel
assembly by the assembly robots. This planning phase minimizes the workload im-
balance between the assembly robots without violating local attachment constraints,
given by the geometry of assembly tiles/components, and global precedence con-
straints, required for structural stability. While this partitioning strategy ensures the
correctness of the distributed assembly strategy, the allocation is performed a priori
and cannot cope with execution time assembly errors, e.g., incorrect and/or missed
placements. In this paper, we extend our existing work Worcester et al (2011) to
enable online error detection and correction during the assembly process. This is
aided by a small number of scanning robots capable of providing real-time visual
feedback of the state of the structure during assembly. Additionally, we also include
online workload balancing that do not violate local precedence constraints between
assembly components. An advantage of the proposed workload balancing strategy is
that it can be used with any pre-existing assembly plan modeled as a tree where the
root node represents an assembly component located on the exterior of the desired
structure. Our main contribution is cooperative assembly framework that integrates
the planning, sensing, and workload balancing into a single coordination architec-
ture for teams of heterogeneous robots.

The paper is organized as follows: We describe our methodology in Section 3.
The experimental setup and results are presented in Section 6. The experimental
insights and lessons learned are reported in Section 7. We conclude with directions
for future work in Section 8.

2 PROBLEM STATEMENT

In this work, we build on the results in Worcester et al (2011) to devise an online
workload balancing strategy for the distributed assembly problem. The objective
will be to parition the task into subtasks as evenly divided as possible, so that each
robot has close to the same amount of work. In addition to the preplanning algo-
rithm from Worcester et al (2011), we add an online algorithm to enable robots to
trade tasks for faster completion. A scanning robot equipped with a Microsoft Xbox
Kinect is added to provide online error detection, so any missing parts can be de-
tected and replaced. which causes the assembly robots to replace the missing part.
We assume a team of Na assembly robots, each capable of transporting a single
assembly component from a cache location to the assembly site, and Ns scanning
robots, equipped with visual depth sensors. Let M denote the number of distinct
assembly components/tiles/nodes where ti denotes a component/tile/node of type i.
We will assume that each tile of type i can be described as a general polytope and
that the robots know the geometries of the different tile types a priori. Furthermore,
every tile of type i will have a fixed number of attachment sites. These attachment
sites are locations where tiles can mate and lock onto other tiles. Let W denote the
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workspace and Sd denote a desired target structure. The structure-free portion of W
is given by W f = W \ Sd . Let GSd = {VSd ,ESd} denote the structure graph where
each node in VSd represents each structural component that can be placed next to or
on top of other component(s) by a single robot to form larger structures. An edge
(u,v) exists in ESd if v can be reached from u through a path in W f and vice versa.
For every (u,v) ∈ ESd , we assign a weight equal to the planar Euclidean distance
between u and v. The mass of a node is the amount of time required to build the
node. We also assume that Sd is finite in size or VSd is a finite set.

We assume assembly constraints of the form u ≺ v, or u must be built before
v. This can represent a variety of assembly constraints, e.g., different materials
that must be combined in a specific sequence or the placement order of support-
ing components for structural stability during assembly. For a desired Sd , we de-
fine a constraint graph as a directed graph GC = {VC,EC} such that VC = VSd and
EC = {(u,v)|u ≺ v} and for every (u,v) ∈ EC, we refer to u as a support, and to
v as a supported node. In general, given Sd , these constraints can be obtained by
adding an edge for each node that is directly supported by another node (i.e., be
placed after that node), derived from an AND/OR graph representation (Sanderson
et al, 1990), or derived from a sequential assembly plan similar to Grushin and Reg-
gia (2008). Finally, we define a directed graph GR = {VR,ER}, i.e., the route graph,
where VR =VSd and ER is given by ER = {ESd \ED} with ED = {(u,v)| (v,u) ∈ EC}.
The route graph represents all the viable paths within the structure that do not travel
from a supported node to its support. We assume an obstacle-free and fully con-
nected W prior to the assembly of Sd to simplify the motion-plans used to estimate
the time to assembly for individual components and to ensure all components in Sd
are reachable at some point in the assembly process.

(a) (b) (c)

Fig. 1 (a) A structure graph, navigation between nodes is only possible if an edge is present be-
tween those nodes. (b) A constraint graph requiring that the central node be built before the adjacent
nodes. (c) An example of a structure that would not be in the set of admissible structures SA. The
displayed constraints state that each of the outer nodes must be placed before the central node.
Assuming the robot cannot navigate between two of the corner pieces, a robot cannot reach the
central node once all of its supports have been placed.

We define the set of admissible structures SA as structures for which GR is
strongly connected and GC has no cycles. For 3-D structures, the limitations of the
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mobile manipulator adds the restriction that to be a member of SA, each node must
be reachable from W f according to the geometry of the assembly robot. For each
robot we define two neighbor sets. The first, N1, is a static set of robots that the robot
is allowed to make trades with. This is chosen to be the two robots with neighboring
entrance nodes as defined by mapping the direction from the center to the entrance
nodes onto a unit circle. The second, N2, is a variable set encompassing all robots
responsible for components adjacent to that robot’s own components. This set N2
is the set of robots that may place a support node that affects the current robot. We
will often use the term neighbors to describe the set N1.

Finally, we assume robots are able to localize within the workspace, identify and
manipulate the components located at the parts/components cache, and identify the
structure throughout assembly. While our work is focused on ground mobile manip-
ulators, the proposed partitioning strategies can be extended to other autonomous
robots.

The objective can then be stated as requiring the is for the Na assembly robots to
build the desired structure Sd , which must be a member of SA, without violating the
constraint graph GC. During this process, a balanced workload will be maintained
via the online trading algorithm and any errors will be reported by the Ns scanning
robots to be corrected by the assembly robots. All communications for a robot must
be limited to the sets N1 and N2 defined for that robot.

3 Methodology

3.1 Task Partitioning

Given Sd and Na assembly robots, we employ the approach described in Worcester
et al (2011) to determine an appropriate partitioning of the assembly of Sd into Na
tasks that can be executed in parallel. The objective is to arrive at a partition that
maximizes parallel execution of the assembly while minimizing workload imbal-
ance between the robots without violating any of the placement precedence con-
straints between the assembly components. The approach uses Dijkstra’s algorithm
with multiple starting nodes to generate a set of assembly tasks for each robot.
Rather than each node finding the shortest path to a single start node, this results
in finding the shortest path to any start node. This results in a partitioning of com-
ponents of Sd such that each robot’s task is composed of tiles that are closest to its
starting node, and each task is represented by a tree. By building from the leaves
back to the root it is possible to avoid blocking access to unbuilt nodes within the
task. The only limitation on this is that we do not allow robots to claim a supporting
node as a child of the node it supports. This allows the robot to build from leaves
to root without violating constraints on order. The starting nodes are chosen to be
equally spaced along the exterior. The output of this part will look something like
Fig. 2. This initial allocation strategy is then improved with a second phase of node
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trading to yield a more balanced workload among the robots. The last step of this
approach is the generation of an assembly sequence for each robot that minimizes
the time a robot must wait for the placement of supporting tile by another robot.
This is achieved by maximizing the time between a placement and the placements
of any supporting tiles.

Fig. 2 An example of Dijkstra’s algorithm with multiple roots applied to a graph. The red nodes
represent the roots of the two trees. One robot claims the green nodes, the other claims the blue.
The green robot cannot claim any more nodes because it has distance 3 to all the blue nodes, while
the blue robot has distance at most 2 to any of its nodes.

It is important to note that the approach described in Worcester et al (2011) is a
partitioning strategy that is executed a priori and generates a distributed assembly
strategy for a team of Na robots given Sd , and {t1, . . . , tM}.

3.2 Online Workload Balancing

In this work we extend the preplanning approach described above to include online
workload balancing, accomplished by having each robot independently propose ap-
propriate trades of tasks. The preplanning approach generates a starting plan repre-
sented by a set of tree structures, one for each robot’s subtask, with the restriction
that the root node provides an exit from the structure. Each robot begins with full
knowledge of the preplan, but may be unaware of changes made to that plan by
other robots. The overall strategy used is to maintain accurate knowledge of N1,
which is the set of robots we are able to trade with. Outside this set, a robot has no
knowledge of changes made to the plan unless they affect a robot in its N1 set. These
changes will be relayed by that robot, so no communication with robots outside N2
is required. The only communications coming from outside N1 are messages indi-
cating that a support has been placed for an unbuilt node held by the robot, which
necessarily comes from a robot in N2. This class of messages could be replaced with
a sensor capable of determining whether a specific support is present for a node that
is otherwise ready to be built. By maintaining accurate knowledge of robots that can
be trading partners, each robot is able to independently plan and propose beneficial
trades. A robot will propose a trade whenever it is idle due to none of its task being
currently buildable, or when its workload is below the average of its neighbors by
at least twice the average build time for a node.
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3.2.1 Node Trading Algorithm

The algorithm is based on Phase II of the preplanning algorithm, which is described
in Worcester et al (2011). This approach considers three criteria for evaluating
trades. These are the distance from the root to the node being considered, the dif-
ference in task size between the giving and receiving robot, and whether taking the
node being considered would put both parts of a constraint in the same task (which
reduces the dependency between robots). By applying these criteria to all neighbors
of the current task, a robot can find the highest value trade it could currently make.
For this application the algorithm has been revised to work in a distributed fashion,
with each robot managing its own subtask and holding as accurate a representation
as possible of neighbors’ subtasks. The method a robot uses to manage its own task
is to maintain a min-heap structure containing all nodes that are ready to be built.
For each node that has not yet been added to the heap, it maintains two variables
describing the number of unbuilt children in the tree structure representation of the
task, and the number of unbuilt supports (nodes that must be built before that node,
generally because they provide an immediate physical support). After building a
node itself or receiving a message from another robot building a node, the algorithm
updates both of these variables accordingly. When both have a value of zero, indi-
cating that the robot can build the node without blocking its access to other parts of
the structure and all supports are in place, it adds that node to the heap. The heap
priority is described by:

P = dci− cki +(w∗ tsi) (1)

where P is the heap priority, dci is the distance from the center of the structure to
node i, tsi is the timestamp the last support was built for node i by another robot, and
w is a weighting factor. The variable cki represents the benefit from building this
node in terms of how many nodes it supports. The tsi factor gives a higher score,
which corresponds to a lower priority, to nodes with supports that were placed more
recently. During this process, the robot frequently checks for incoming messages,
and sends a message to all robots in set N1 whenever it builds a node.

3.2.2 Communications Protocol

This section details the types of messages, when they are sent and how they are
dealt with. Messages are passed with the following information: destination robot,
message type, source robot, and data. The destination robot field is used as a tag for
what robot should pick up this message, with two exceptions that will be discussed
later. The source robot is the robot sending the message (necessary in order to ac-
knowledge receipt of messages), and the data field is of variable length depending
on the type of message. The message type is interpreted as follows:

1. Sending robot built a node (data length 1)
2. Request to take a list of nodes (data length variable, first element gives length)
3. Answer to trade request (data length 1, yes or no)
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4. Receipt of a new node along with the parent node it was attached to (data length
2, node and parent)

5. Sent a list of nodes to another robot (data length variable, specified by first ele-
ment)

6. Built a node which acts as a support for a node held by receiving robot (data
length 2, built node and supported node)

7. Acknowledgement of received message
8. Request for a resend of message type 1 if a certain node is built (data length 1)

Message types 2 through 5 are only sent to robots in the set N1, while message
types 1, 6, and 8 can also be sent to robots in the broader set N2.

Throughout most of the task, these messages are aimed at a single robot. There
are two exceptions which use a broadcast architecture, these are the coordination
of the start and end of the experiment. In these cases we use special flags in place
of the destination robot field, which indicate a different message structure then the
norm. For the start case, there is no more information in the message, all robots
start building as soon as they receive the message. For the end case, the rest of the
message consists of a list of robots we know have finished. A robot done with its
own task will only replace this message if they can add to its length (generally by
adding their own id). When the list contains all IDs the robots stop. Coordination
of finish times is necessary in order to be able to continue responding to requests
for build confirmations until all tasks have been completed. Both of these message
types are relayed by each robot. This means that communication only needs to be
possible with robots in N2 in order for successful completion of an assembly task.

When a robot receives a type 1 (node built) message, it updates its representation
of the sending robot’s task, and checks whether the built node acts as a support
for any of its own nodes. For type 2 (trade request), the robot checks that 1) it is the
current owner of the requested nodes, 2) the nodes are not built, and 3) it is currently
not building any of the requested nodes. If all of these conditions are satisfied, the
robot responds with a message of type 3 saying ’yes’, sends a message of type 5 to
N1 listing the nodes lost, and updates its representation of its own task. The robot,
however, does not yet update its neighbor’s task because it does not know where
the new nodes will be attached. If the conditions are violated, it instead replies with
a message of type 3 saying ’no’. For type 3 (answer to trade), if the answer is no,
the robot cancels the proposed trade and returns to the main routine. If the answer
is yes, the robot modifies its representations of both its own task and its neighbor’s
task, and then sends a message of type 4 to N1, detailing where on the tree each of
the new nodes is added. Upon receipt of a type 4 or type 5 message, robots modify
their representation of the sending robot’s task.

The last two message types usually come from robots in the set N2 \ (N1 ∩N2),
and deal with supporting nodes. Message type 6 informs a robot that a support has
been built for one of its nodes. When receiving this message, the robot first checks
whether it still holds that node. If it has traded that node, the sending robot may not
be aware of that, being outside N1. If it has that node, it modifies its own represen-
tation and decrements the variable representing the number of unbuilt supports. If
it does not, it forwards the message to whichever robot it traded the node to, which
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it knows because it is maintaining a full representation of robots in N1. The other
message is type 8, which is a request for confirmation that a certain node has been
built. This message is sent when a robot has an empty heap and can find nothing to
take from its neighbors, but still has nodes with unbuilt supports. In this situation, a
robot may have missed the message informing it that the support had been built and
will request that message to be resent. When receiving a message of type 8, a robot
checks whether the node being asked about was actually built. If so, the robot sends
a message of type 1 to the requesting robot. If not, it does nothing.

Before building each node, a robot compares its own remaining task size with
the average task size in its local neighborhood, which we define as the set N1 plus
itself. If the robot’s own task size is below the average by at least twice the average
node build time, it searches among its representation of its neighbors for a valid
trade, which it then requests. The other time it looks for a trade is when its own
build heap is empty, indicating that it will be idle if it cannot find work to take from
another robot. The benefit of looking for trades even when it still has its own work
to do is that earlier trading allows more flexibility in what nodes are exchanged,
because less of the structure has been built. Once the robot decides to look for a
trade, it scores the possible trades according to the criteria laid out in Worcester
et al (2011), considering relative task sizes, relative distances to the node in question,
and the benefit a robot gets from holding both parts of a constraint itself. We reward
trades that bring both parts of a constraint to a single robot to minimize the amount
of cross-robot interaction. While the assembly robots are doing this, the scanning
robots inspect the structure to discover missed placements, as described below.

3.3 Complexity

It is possible to determine bounds on the length of the experiment as well as the
number of messages sent, which are provided in the following two theorems.

Theorem 1. The length of the experiment will be O(M ∗D), where M is the number
of tiles and D is the maximum distance to the cache.

Proof. The only situation in which a robot will be idle while it has a non-empty
task is if its remaining tasks have unsatisfied constraints. Because we assumed that
the constraint graph may not have cycles, there must be at least one unbuilt tile
which does not have an unsatisfied constraint. Therefore, at least one robot, the
robot possessing that tile, will still be working. The time to deliver a single tile will
be twice the time taken to drive to the cache combined with a constant amount of
time for pickup and placement. This time is O(D). The worst case scenario would
be a chain of constraints such that only one tile can be built at a time. In this case
the time taken will be O(D) times the number of tiles M, giving a total time of
O(M ∗D).

Theorem 2. With the exception of message type 8 and responses to it, the total num-
ber of messages sent will be O(M ∗Na).
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Proof. Message types 1 and 6 will only be sent once per tile, except as a response
to message type 8, and are thus directly bound by O(M). Messages 2 through 5 are
all bound by the number of trades. There are two cases in which tiles are traded,
either when a robot is idle or when a robot has less work than its neighbors. If a
robot is idle, it will immediately build any tile it receives in a trade, which prevents
that tile from being retraded, since a robot cannot give away a tile being built. This
limits the number of trades due to idle robots to O(M), as each such trade results in a
tile being built. A robot taking work from its neighbors cannot take more than M/2
tiles unless it is then giving those tiles away, since this would necessarily involve
taking from a neighbor with fewer tiles. If it is giving those tiles away, this pattern
can only be repeated Na times before arriving back at the original robot. Since each
successive robot has to have fewer tiles, it is not possible for this chain to repeat,
as the first robot cannot have fewer tiles than itself. Therefore the total number of
trades is O(M ∗Na), which limits message types 2 through 5. Message type 7 is sent
once for each other message, and therefore increases the number of messages by a
constant factor of two, which does not change the complexity. It is not possible to
limit the number of messages of type 8, as this will request message type 1 to be
resent until it is successfully received.

3.4 Visual Feedback

To provide information to the robots about the current state of the physical structure
Sp as it is being assembled, we implement a feedback system using visual depth
sensors. The objective is to use online sensing to compare Sp with the robot’s inter-
nal model of the currently assembled structure Sa, and to provide control data to the
building process, based on differences between Sp and Sa. To keep an updated repre-
sentation of the state of Sp, we add a sensing robot to the system, which is equipped
with a depth sensor Kp, in our case the Microsoft Xbox Kinect sensor. The robot
constitutes the system for visual inspection (VI). The VI-robot is independent of
construction robots. It runs a prioritized exploration algorithm, which aims to map
and update the dynamically changing physical structure with priority on currently
targeted building regions. The input to this system is the internal structure Sa (Figure
3(b)), which models what the system is expected to see from the physical structure
Sp (Figure 3(a)), and the raw visual sensor data (3D point cloud, Figure 3(c)), the
output is a state for every block ti of the internal structure Sa, denoting if the tile
is present, missing, or occluded (currently no visual information about the tile is
available).

Before an assembly robot adds a part ti to the physical structure Sp, it queries the
VI-system, if the targeted region data is updated and Sp matches the expected state
of Sa. For this comparison, we simulate a robot internal system containing Sa and
a virtual Kinect sensor Kv. Using ray-tracing, we simulate a Kinect scan of Sa. The
outcome of the simulated ray tracing is compared with the real scan of the physical
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Kinect Kp to compute the state for each tile ti ∈ Sa. The following sections will
explain the VI system in more detail.

3.4.1 Coordinate System Matching

To compare the outcome of the physical scan and the virtual scan, we must find
Pv, the pose of Kv in the virtual system. If we let Pp denote the pose of Kp in the
physical system, then Pv has to equal Pp. The positioning is performed in multiple
steps consisting of an overhead localization system, a floor based correction, and
an Iterative Closest Point (ICP) alignment. In the following we use a right handed
coordinate system. The horizontal plane is described by (x,z), height is described
by the y-axis.

First, an overhead localization system gives an estimate of the horizontal (x,z)
position of Kp. This includes the (x,z) coordinates as well as the yaw α , i.e. the
rotation angle around the y-axis. The overhead localization system is provided by a
network of cameras with errors in (x,y) below 5 cm and angular errors in α of ¡10
degrees.

To complete Pp, the missing pose-parameters y (the Kinect’s height) and β ,γ
(pitch and roll, i.e. rotation around x and z axis respectively) are determined by a
floor-based correction. We perform floor detection in the point cloud Cp resulting
from the physical scan. Since the floor in the physical system defines the x−z plane,
a transformation Tf , which aligns the floor’s normal with the y axis of the virtual sys-
tem completes the estimate of Pp. We compute Tf by regression of the floor points
to their projections in the x− z plane (point to plane correspondence). As such, we
note that Tf has no y-rotation component, i.e. the Kinect’s yaw, as previously deter-
mined by the overhead system, is not altered by an otherwise ambiguous rotation.
In addition, we re-compute the translational part of Tf in the x− z plane, such that
only the vertical position of Kv is affected.

While there are errors in the localization and ground plan position estimates and
noise in Cp, they provide a sufficiently good starting point for an Iterative Closest
Point (ICP) alignment (Besl and McKay, 1992). We use Pp as a starting estimate for
Pv, therewith we also transform Cp: we set Cp← TfCp. We perform a 6D (3 location
parameters, 3 directional parameters) point to plane ICP, with the goal to align Cp to
Sa. ICP is a well known technique in robotics and computer vision, successfully ap-
plied to align (3D) point clouds, especially for robot mapping (Nüchter et al, 2005).
Given two point clouds C1 and C2, it finds, in an iterative way, a (locally) optimal
transformation Tc that minimizes the squared sum of distances between points in
C1 and their iteratively re-determined closest neighbors in TcC2. ICP is known ro-
bust and fast as long as a good starting estimate of the point-poses is provided. In
practice, the previously described steps to compute Pp proved to be sufficient as a
starting point.

We perform a fast point-to-plane ICP version: C1 ⊂Cp originates from the phys-
ical scan Cp, and consists of a subset of points, being candidates for points belong-
ing to Sp. C2 is iteratively generated as the projection points of C1 onto the virtual
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structure Sa. Internally, Sa is represented as a set of planar patches, describing the
geometry of the tiles ti. Storing the tiles of Sa together with a hierarchy of axis
aligned bounding boxes (AABB) allows for fast computation of the projections of
C1 onto Sa. The hierarchy is given naturally: we store an AABB for the structure Sa,
for each tile ti ∈ Sa and each planar patch p ∈ ti. Using this hierarchy of bounding
boxes, C1 results in a relatively small subset of Cp. In addition, we omit points that
belong to the floor, as determined by the floor detection step. A single Kinect scan
in hi-res (640 x 480) contains about 300000 points, the typical point cloud of can-
didates describing reflections from the structure Sp, after filtering, typically reduces
the number of points to less than 10000. We limit our ICP to a maximum of 10 iter-
ations. ICP results in TICP, an accumulated rotation and translation to align C1 to Sa.
When we apply TICP to Pp, this reduces pose errors from the former computation.
We set Pv = TICPPp. See Figure 3(d) for the result of this step.

ICP not only provides the pose Pv of Kv in the virtual system, but also the pro-
jection points C̄1 of C1 onto the structure Sa. We therefore compute a connection
between the physical point cloud and the virtual structure. In fact, for each tile ti
in Sa, we can determine how many projected points, called physical support points
si ⊂ C̄1 of ti are projected on ti. The set of support points tells us, if a tile ti of the
virtual structure Sa is seen in the physical world. A tile ti with a sufficient number
of support points is present. However, the converse argument is not valid, since a
tile without support could be physically present, but occluded. The next step, ray
tracing, solves this problem.

3.4.2 Ray Tracing

This step determines the set of reflection points of a scan of the virtual Kinect Kv
with pose Pv of the virtual building Sa. We position the virtual Kinect at pose Pv
and simulate a ray-tracing using the Kinect’s optical properties (resolution, view
angles). Again, since the virtual building Sa is stored using planar polygons and
a hierarchy of axis aligned bounding boxes, the ray intersection can be performed
very efficiently. For each ray, we compute the closest intersection with a tile ti from
the Kinect, resulting in a virtual point cloud Cv. For each point in Cv, we know
the supported tile ti (i.e. the tile the generating ray intersected with). Ray tracing
determines the support sets in the virtual system, that is, the support that we should
see under the condition Sa = Sp. In contrast, C̄1 determines the real support, i.e. the
support we do see. See Figure 3(e) for the result of the ray tracing step.

3.4.3 Tile Classification

Differences in support from Cv and C̄1 respectively determine if a tile is classified
as present, missing, or occluded.

For every tile ti, denote the number of physical and virtual support points by pi
and vi respectively. Define r as the minimum ratio between pi and vi, r =min( vi

pi
, pi

vi
),
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tr is a threshold value for this ratio, set to 0.7. For our purpose, it proved to be
sufficient to only compare the number of support points of each tile, i.e., we are not
explicitly using any geometric differences. Support below a threshold of 100 points
is set to 0.

The state of a tile ti of Sa reflects its presence in the physical structure Sp. We
determine this state as follows:

• vi = 0⇒ the tile is occluded.
• vi 6= 0 and pi = 0⇒ the tile is missing.
• vi 6= 0 and pi 6= 0 and r ≤ tr ⇒ the tile is missing. This case implicitly tests

geometric differences.
• vi 6= 0 and pi 6= 0 and r > tr⇒ the tile is present.

If the state of a tile ti is “missing”, the building robots have to adjust. “Present”
signals, that ti ∈ Sa and ti ∈ Sp at the expected position, the building process can
continue. If a tile is in state “occluded’, the VI-robot has to re-scan the building
from a different position before the building process can proceed. See Figure 3(f)
for an example.

3.5 Online Error Correction

The VI-robot(s) is responsible for assigning the replacement of any missing tiles it
discovers. It does this by managing an auction for each block that should have been
placed but is absent. Each assembly robot sends a message to the VI-robot(s) after
placing a tile. The VI-robot monitors these messages to maintain a state vector q,
where qi is 1 if the block has been placed and 0 otherwise. After each placement,
the VI-robot reports a sensing vector qs

j, where qs
j is 1 if the block is definitely

present, −1 if it is missing, and 0 if the presence or absence of the block cannot
be determined. Then, if qi ∗ qs

j = −1, a block that a robot claims to have placed
is determined to be missing. Once the error has been detected, the scanning robot
sends a message to inform the assembly robots that the block is missing and asks
for bids to determine which robot will replace the missing block. Each robot then
constructs a bid based on the following criteria:

bi = wi−A∗ ci +B∗di j, (2)

where bi is the bid of the ith robot, wi is the remaining workload of the ith robot, ci
is the number of blocks still to be placed that are directly supported by the missing
block, and di j is the distance between the missing block and the ith robot’s cache.
The constants A and B are weights that can be optimized experimentally.
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(a) (b)

(c) (d)

(e) (f)

Fig. 3 Vision Feedback System. (a) Physical structure Sp (b) Virtual structure Sa. Note that Sp and
Sa differ in this example: the long rectangle (front right) in the virtual structure is not present in Sp,
it is replaced by a small cube. In the building process, this is an example of a missing/incorrect tile.
(c) Green points show raw input data Cp from the physical Kinect sensor Kp. The Kinect’s pose
Pv in the virtual system was determined by the overhead positioning system. This figure shows the
coordinate matching before floor based correction and ICP (d) After floor-based correction, ICP
and candidate filtering: the yellow dots show the pose-corrected raw kinect data C1, aligned to the
virtual building. Points of the original raw data which were unlikely to support the structure were
removed (floor- and bounding box based filtering). (e) Ray tracing: the red lines show some rays
of the simulated Kinect Kv scan to determine the visibility of tiles ti ∈ Sa. Yellow dots show the
aligned real data C1, green dots the result of the virtual scan Cv. The difference in support for each
tile from yellow and green dots (real/virtual support points) is used to determine the state of each
tile. (f) Result: Green tiles: present in Sa and Sv. Yellow tile: occluded (please note that this tile is
occluded from view point Pv, as seen in (e). Here we rotated the view to make it visible). Red tile:
Missing in Sp. The vision system correctly identified the front right rectangle as missing.

4 Simulation Results

We implemented the node trading algorithm on a network of seven computers com-
municating over a wireless router, each simulating the activities of a single robot.



Distributed Assembly with Workload Balancing 15

Building a node was simulated by subjecting the robot to a delay randomly drawn
from N (4,8), truncated at 0. We used a high standard deviation relative to the mean
to test the system’s robustness to high levels of variability. We analyzed two trends
in the scaling of the problem. First, we considered all seven simulated robots coop-
eratively building a structure that varies in size from 27 up to 512 nodes. Second,
we considered a variable number of robots applied to the same structure of 512
nodes. In both cases, we were primarily interested in how the completion time and
the number of messages sent scale with the structure size and the number of robots.

The structures used for the experiments described above were cubes, built out
of cubic pieces, as shown in Fig. ??. The purpose of using a uniform structure is
to isolate the effects of changes in structure size and number of robots. In table 1,
we provide results of three specific experiments to demonstrate the flexibility of the
approach. Example 11 corresponds to the structure shown in Fig. 4, which is one
of the structures our experimental testbed can build, built here by 4 robots. This
demonstrates the approach’s ability to handle heterogeneous building materials in a
variety of configurations. Example 12 and 13 are each based on a cube of 512 nodes
built with 7 robots. In Example 12, we deliberately start one of the robots with only
a single node to force the approach to recover from a lopsided workload distribution.
Example 13 has the added constraint that each node with a y coordinate equal to 4
must be built before the adjacent node with a y coordinate equal to 5. This is to
demonstrate the ability to manage types of constraints other than those imposed by
gravity.

(a) (b)

Fig. 4 The structure used as example 11
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Table 1 Examples demonstrating flexibility

Criterion Ex. 11 Ex. 12 Ex. 13
Structure size 43 512 512

# of robots 4 7 7
Ave. # of nodes per task 10.8 73.1 73.1

St. Dev. of # of nodes per task 3.30 35.4 37.6
Total # of nodes traded 15 55 15

Ave. wait time during construction 192.3 17.5 33.3
Ave. wait time after construction 11.8 236.4 775.1

Ave. completion time 302.7 1063.0 992.9
# of messages sent 508 1749 1615

(a) (b)

Fig. 5 Graphs showing relatively linear growth in both completion time and number of messages
with respect to structure size. Data listed in table 5.

(a) (b)

Fig. 6 Graphs showing number of messages and completion time relative to number of robots. As
the size of the team increases, the completion time drops linearly while the number of messages
shows slight growth. Data listed in table 6.

5 Discussion of Simulation Results

Fig. 5 shows the approach being run with 7 robots on a variety of structure sizes.
Examining the number of messages sent, we see that the communication volume
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increases linearly with the size of the structure. Average finish time is also increasing
linearly with the size of the structure. This means that the rate at which the robots
build is unaffected by the size of the structure. Also, it is worth noting that the
amount of messages per time (number of messages divided by average completion
time) is a constant relative to structure size, meaning there is no communication
barrier to scaling this approach to larger structures.

Next, Fig. 6 shows how the approach scales with number of robots on a constant
structure. First, the number of messages sent stays fairly constant across different
numbers of robots, showing only a slight growth, so adding more robots does not
cause any problem in communications. For the structure used, multiplying the num-
ber of robots used by the average completion time gives a relatively constant result.
This means that adding an extra robot does not introduce significantly extra ineffi-
ciency in terms of idle robots waiting for placements. Certainly at some number of
robots, this would stop being the case, but up through seven robots we have not yet
seen significant additional idling. For this approach, a hard limit on the number of
robots that can be used is the number of valid root nodes (recall that the root needs
to be viable as the last node placed on the structure). For the structure used, this
would allow up to 64 robots to be applied to the problem.

Example 12 started one robot with a single tile to test the robustness of the al-
gorithm to lopsided initial conditions. As shown in Table 1, this resulted in a large
number of nodes being traded,which is a result of nodes being moved towards the
robot that started with a single node. This robot ended the experiment having built
25 nodes, roughly a third of the average size. This also resulted in an unusually high
variance in number of nodes built during this experiment. Example 13 had a wall
of constraints requiring that each node with a y coordinate of 4 be built before the
corresponding node with a y coordinate of 5. This resulted in a bimodal distribution
for number of robots built, with two robots building 128 nodes each and the other 5
all in the range 45-55. This is likely caused by an inability to trade across the wall
of constraints imposed, which effectively divided the robots into two separate teams
based on the locations of their roots.

6 Experimental Validation

6.1 Setup

The proposed distributed assembly strategy was implemented on our multi-robot as-
sembly testbed. The testbed consists of two mini-mobile manipulators (M3 robots),
or Nc = 2, shown in Figure 7, each equipped with an iRobot Create base, a
Crustcrawler 5 DOF arm, 802.11b wireless communication, and a Hokuyo URG
laser range finder (LRF). The laser range finder is first used to detect the position
and orientation of the tile with respect to the robot. The arm is equipped with a
1 degree of freedom 2 finger gripper. The arm is then commanded to pick up or
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place the block at the given position. Tiles to be picked up are individually placed
at fixed locations in the workspace. Since the geometry of each tile and the desired
structure is known a priori, the desired placement position and orientation of each
tile can be computed in relation to the base of the structure as detected by the laser
range finder. Further, since each tile directly above another is defined as being con-
strained by the supporting tile, the robots assume the tiles above the current tile
have not been placed yet, allowing us to assume an obstacle free path for the manip-
ulator. Tiles attach and self-align using magnets. In addition to the two M3 robots,
the testbed included one scanning robot equipped with a iRobot Create base and a
Microsoft Kinect visual depth sensor. This robot follows a fixed rectangle surround-
ing the workspace of the assembly robots. Overhead localization for the robots was
provided using two visual cameras.

Fig. 7 Team of two assembly robots and one VI-robot with a raised Kinect around a partially
completed structure.

Each robot was given the global position of the structure’s center and the posi-
tions of their respective parts cache. The assembly parts were plastic tiles of various
shapes and sizes (side lengths from 4− 17 cm), each with a given set of magnetic
attachment sites (see Figure 8(a)).

To test error correction, each robot was assigned a preplanned assembly plan de-
termined by Worcester et al (2011), with no node trading allowed. The assembly
plans consisted of a list of tile identifiers in the computed assembly order. Dis-
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tributed implementation of the plan was achieved by encoding the immediate sup-
ports for each component in the plan to ensure robots wait for the placement of a
missing support tile by another robot before placing their parts.

The assembly tiles were grouped by type and placed in predefined locations in
the workspace. The idea is to have a separate parts cache for each tile type. In our
experiments, we considered the distributed assembly of 3D structures composed of
14 tiles with 5 distinct tile types. Figure 8(b) shows the desired structure for the
experiment. To simulate missed placements, random assembly tiles were removed
at various times during the assembly process.

In the next set of experiments the node trading was included to test for a reduction
in assembly time compared to the preplanned approach. Tests were also done with
one robot being given artificially longer assembly times to simulate the effects of a
less efficient robot.

(a) (b)

Fig. 8 (a) Sample assembly tiles. (b) Desired structure to be assembled.

6.2 Experimental Results

Fourteen experimental trials were run on the scanning robot for the desired structure
shown in Figure 8(b). During each trial, one or more random assembly tiles were
removed at different parts of the assembly process. Figure 9 shows the results of
one of the experimental trials where the missing tile was successfully detected by
the scanning robot. Out of twenty-two removed blocks, the scanning robot was able
to successfully detect twelve of the missing tiles and reported undetermined for
the other ten. There were no false positives during these trials, and only one false
negative where a tile was reported as missing when it was actually present. The
smaller tiles (square and triangle) were always reported as undetermined, while the
larger tiles were always detected as missing after they had been removed in these
trials.
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(a) (b)

Fig. 9 ((a) Tile removed. (b) Missing tile reported by the scanning robot.

Table 1 summarizes the assembly partition obtained at the start of an experimen-
tal trial for each robot. The tiles allocated to each robot are shown in the order in
which they are supposed to be placed. Table 2 shows the updated assembly alloca-
tion as tiles are removed during the experiment, including the workload reallocation
after the detection of errors.

Robot 1 Tile ID Robot 2 Tile ID
Long Rectangle 3 Trapezoid 7

Trapezoid 6 Octagon 5
Octagon 4 Square 8
Square 9 Square 10

Long Rectangle 11 Long Rectangle 12
Triangle 13 Triangle 14

Table 2 Initial Allocation for the 3D Structure in Fig. 8(b)

To test the node trading, experiments were done with varying simulated manip-
ulation times (the amount of time taken to pick up or place a block), using two of
the M3 robots described above. The manipulation was replaced with a timed delay
drawn from a specified distribution. The typical manipulation times were measured
to have a mean of 69.0 seconds and a variance of 2.5 seconds. The first set of ex-
periments is done with this scaled down by a factor of 10. For the second set of
experiments, robot 2 keeps the same distribution while robot 1’s times are scaled up
to half the original times (5 times that of robot 2). This is done in order to create a
situation where the slower robot will need to give work to the faster robot in order
to minimize completion time. Another benefit of running the experiments this way
is that the unreliable placement does not need to be corrected with a scanning robot,
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Robot 1 Tile ID Robot 2 Tile ID
Long Rectangle 3 Trapezoid 7

Removed tile 7
Trapezoid 6
Octagon 4 Trapezoid 7

Removed tile 4
Square 9 Octagon 5

Removed tile 5
Octagon 4 Square 8

Removed tile 8
Octagon 5

Long Rectangle 11 Square 10
Triangle 13 Long Rectangle 12

Removed tile 13
Square 8 Triangle 14

Triangle 13

Table 3 Allocation After Detection of a Missing Tile.

allowing the node trading to be analysed on its own. Table 4 shows results for the
two sets of experiments. From the results, it does not seem that the higher manip-
ulation time was sufficient to cause any trades to occur for such a small structure.
In fact, one of the trials with the higher manipulation time finished before the faster
manipulation time. Since this was adding about 20 seconds per placement for 5
placements, it should have added 100 seconds to the completion time for the slower
robot. However, the variation in time taken to navigate and use the LRF to align with
the cache and structure seems to have been large enough to wash out the effect of a
higher manipulation time. Larger experiments are needed to see the effects visible
in the simulations.

Table 4 Two M3 robots with variable manipulation times

Criterion Same speed Different speed Different speed, no trading
Structure Size 9 9 9

Ave. # of nodes 4.5 4.5 4.5
St. Dev. of # of nodes 0.71 0.71 0.71

Total # of nodes traded 0 0 0
Ave. wait time during construction 0.6 0.4 0.6
Ave. wait time after construction 165.8 220.4 156.3

Ave. completion time 1007.0 1066.4 953.0
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7 Experimental Insights and Lessons Learned

The execution of complex tasks by a team of heterogeneous robots in a complex
and dynamic environment with limited resources poses significant challenges. Most
existing assembly strategies do not explicitly address the impact of sensing and ac-
tuation noise on the performance of a team of autonomous robots tasked to assemble
complex three dimensional structures in an actual physical space. In our work, we
consider the real-time on-board sensing requirements necessary for online adapta-
tion of any distributed assembly strategy.

In our experimental setup, we considered two types of real-time on-board sens-
ing: 1) the ability to localize the individual assembly tiles for pick-up and placement
by the assembly robots, and 2) the ability to determine the state of the assembly
structure during the entire assembly process. In both cases, the relative small size of
the assembly tiles in relation to the sensing and actuation precision of the actuators
and sensors used in the system posed significant engineering challenges. However,
the ability to overcome these limitations at the small scale suggests that one can be
more confident in the performance of the algorithms when employed on larger full
scale systems.

8 Future Work

In this work, we presented a distributed 3D assembly strategy with online visual
feedback to enable realtime error detection and correction. Our approach enables the
online verification and adaptation of general 3D assembly strategies. An immediate
direction for future work is to improve the visual feedback system to provide more
detailed assessment of the state of the assembly structure. In particular, the reduction
of false negatives by visually inspecting the structure via different viewpoints. A
second direction for future work is to extend the visual feedback system to enable
identification of incorrect assembly placements as well as missing tiles. The path of
the scanning robot, which is currently a rectangle around the workspace, could also
be optimized to ensure each node gets more frequent views. Expanding the size and
reliability of the experimental testbed will allow more informative results to be seen.
Finally, in both simulation and experiment it is worth noting that in several cases we
do see significant idle time at the end of the experiment, meaning that robots that
have completed their own tasks do sometimes have a long delay before the last robot
finishes. This means that there is still room to gain from adding a mechanism for
a robot to split its task in half, giving half to an idle robot. The complication with
this will be revising the approach to allow two or more robots to share a root node,
which will require all of them to confirm they are finished before one is allowed to
build the root. Another way would be to split off a subtree with its own valid root
node.
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10 Appendix A: Tables of Results

Tables 5 and 6 summarize the following quantities for each experiment: structure
size, mean and standard deviation for number of nodes built per robot, total number
of nodes traded, average time spent waiting during construction, average time wait-
ing after construction (waiting for other robots to finish), average completion time
(not including time spent waiting for other robots to finish, but including any wait
time during construction), number of messages sent, and number of messages that
were not acknowledged (giving an idea of how many messages are actually being
received).

Table 5 Variable size cubes built with seven robots
Criterion Ex. 1 Ex. 2 Ex. 3 Ex. 4 Ex. 5 Ex. 6

Structure Size 27 64 125 216 343 512
Ave. # of nodes 3.9 9.1 17.9 30.9 49.0 73.1

St. Dev. of # of nodes 0.38 2.19 0.690 1.57 3.00 2.19
# of nodes traded 0 3 0 3 23 11

Ave. wait time during construction 3.0 4.5 2.4 2.5 92.7 22.7
Ave. wait time after construction 22.8 25.6 51.7 37.2 55.0 33.7

Ave. completion time 44.0 123.7 246.8 383.6 704.3 912.6
# of messages sent 76 193 325 579 1316 1454

Table 6 Variable numbers of robots on a structure with 512 nodes
Criterion Ex. 7 Ex. 8 Ex. 9 Ex. 10 Ex. 6

# of robots 3 4 5 6 7
Ave. # of nodes 170.7 128 102.4 85.3 73.1

St. Dev. of # of nodes 2.08 5.48 3.29 1.03 2.19
# of nodes traded 6 9 13 7 11

Ave. wait time during construction 1.1 3.9 60.8 38.1 22.7
Ave. wait time after construction 56.1 31.6 98.0 156.6 33.7

Ave. completion time 2038.2 1647 1413.7 1092.7 912.6
# of messages sent 1324 1414 1511 1454 1454
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11 Appendix B: Index to Multimedia Extensions

The multimedia extension to this article is available on the IJRR website.

Extension Type Description
1 Video Error correction by assembly and scanning robot
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