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Robotic Tracking of Coherent Structures in Flows
Matthew Michini, M. Ani Hsieh, Eric Forgoston, and Ira B. Schwartz

Abstract—Lagrangian coherent structures (LCSs) are separatri-
ces that delineate dynamically distinct regions in general dynamical
systems and can be viewed as the extensions of stable and unsta-
ble manifolds to general time-dependent systems. Identifying LCS
in dynamical systems is useful for many applications, including
oceanography and weather prediction. In this paper, we present a
collaborative robotic control strategy that is designed to track sta-
ble and unstable manifolds in dynamical systems, including ocean
flows. The technique does not require global information about the
dynamics, and is based on local sensing, prediction, and correction.
The collaborative control strategy is implemented with a team of
three robots to track coherent structures and manifolds on static
flows, a time-dependent model of a wind-driven double-gyre flow
often seen in the ocean, experimental data that are generated by
a flow tank, and actual ocean data. We present simulation results
and discuss theoretical guarantees of the collaborative tracking
strategy.

Index Terms—Distributed robot systems, marine robotics, net-
worked robots.

I. INTRODUCTION

IN this paper, we present a collaborative control strategy
for a class of autonomous underwater vehicles (AUVs) to

track coherent structures and manifolds on flows. In realistic
ocean flows, these time-dependent coherent structures, or La-
grangian coherent structures (LCSs), are similar to separatrices
that divide the flow into dynamically distinct regions. LCSs are
extensions of stable and unstable manifolds to general time-
dependent flows [1], and they carry a great deal of global infor-
mation about the dynamics of the flows. For two-dimensional
(2-D) flows, LCSs are analogous to ridges defined by local max-
imum instability, and quantified by local measures of finite-time
Lyapunov exponents (FTLE) [2].
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Recently, LCSs have been shown to coincide with optimal tra-
jectories in the ocean, which minimize the energy and the time
needed to traverse from one point to another [3], [4]. Further-
more, to improve weather and climate forecasting, and to better
understand contaminant transport, the use of autonomous sen-
sors is becoming more popular for the measurement of a variety
of quantities of interest in the ocean. One drawback to oper-
ating sensors in time-dependent and stochastic environments
like the ocean is that the sensors will tend to escape from their
monitoring region of interest. Since LCSs are inherently unsta-
ble and denote regions of the flow where more escape events
may occur [5], the knowledge of LCS locations is important in
maintaining sensors in specific monitoring regions.

Existing works in cooperative boundary tracking for robotic
teams, which relies on one-dimensional (1-D) parameteriza-
tions, include [6], [7] and [8], [9] for static and time-dependent
cases, respectively. Formation control strategies for distributed
estimation of level surfaces and scalar fields in the ocean are
presented in [10]–[13], and pattern formation for surveillance
and monitoring by robot teams is discussed in [14]–[16].

Our study is distinguished from the existing studies in that we
use cooperative robots to find coherent structures without requir-
ing a global picture of the dynamics. Building on our existing
study [17], we take inspiration from [18] and design a strategy
to enable a team of robots to track the stable/unstable mani-
folds of general 2-D conservative flows through local sensing
alone. We verify the feasibility of our method through simula-
tions with simple 2-D flow fields, including a time-dependent
double-gyre model. Furthermore, we demonstrate the validity
of the proposed strategy in realistic flow fields, including flows
that are generated in a laboratory setting and actual ocean flows
that are obtained from the Naval Coastal Ocean Model (NCOM)
database [19].

The novelty of this study lies in the use of nonlinear dynami-
cal and chaotic system analysis techniques to derive a tracking
strategy for a team of robots. The cooperative control strategy
leverages the spatiotemporal sensing capabilities of a team of
mobile-networked robots to track the boundaries separating the
regions in phase space that exhibit distinct dynamical behaviors.
The proposed boundary tracking strategy relies solely on local
measurements of the velocity field. The technique is quite gen-
eral, and may be applied to any conservative flow. The ability to
track such structures in real time has many broader implications,
including planning energy and time optimal AUV/autonomous
surface vehicle (ASV) paths in the ocean, improved allocation
of autonomous sensor swarms for environmental monitoring
and surveillance applications [20], and predicting contaminant
dispersion [21].

The paper is structured as follows. We formulate the problem
and outline key assumptions in Section II. The development of
the cooperative control strategy is presented in Section III and
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its theoretical properties are analyzed in Section IV. Section V
presents our simulation results, beginning with the tracking of
static boundaries in Section V-A, time-varying boundaries given
by a time-dependent model of a wind-driven double-gyre in
Section V-B, experimental flow fields that are generated by our
coherent structure flow tank in Section V-C, and actual ocean
flows in Section V-D. Finally, we conclude with a discussion
of our results and directions for future work in Sections VI and
VII, respectively.

II. PROBLEM FORMULATION

We consider the problem of controlling a group of N planar
AUVs to collaboratively track the material lines that separate
regions of flow with distinct fluid dynamics. This is similar to
the problem of tracking stable (and unstable) manifolds of a
general nonlinear dynamical system where the manifolds sepa-
rate regions in phase space with distinct dynamical behaviors.
We assume the following 2-D kinematic model for each of the
AUVs:

ẋi = Vi cos θi + ui (1a)

ẏi = Vi sin θi + vi (1b)

where xi = [xi, yi ]T denotes the vehicle’s position in the plane,
Vi and θi denote the control inputs which are, respectively, the
vehicle’s speed and heading, and ui = [ui, vi ]T denotes the
flow velocity that is experienced/measured by the ith vehicle.
Additionally, we assume that each agent can be circumscribed
by a circle of radius r, i.e., each vehicle can be equivalently
described as a disk of radius r.

In this study, ui is provided by a 2-D planar conservative
vector field that is described by a differential equation of the
form

ẋ = F (x). (2)

In essence, ui = Fx(xi) and vi = Fy (xi). Let BS and BU de-
note the stable and unstable manifolds of (2), respectively. In
general, BS and BU are the separating boundaries between re-
gions in phase space with distinct dynamics. For 2-D flows,
B∗ are simply 1-D curves where ∗ denotes either stable (S)
or unstable (U ) boundaries. For a small region centered about a
point on B∗, the system is unstable in one dimension. Finally, let
ρ(B∗) denote the radius of curvature of B∗ and assume that the
minimum of the radius of curvature ρmin(B∗) > dMax where
dMax is a positive constant. This last assumption is needed to
ensure that the robots do not lose track of the B∗ because the
boundary has too many sharp turns.

The objective is to develop a collaborative strategy to enable
a team of robots to track B∗ in general 2-D planar conservative
flow fields through local sampling of the velocity field. In this
study, the focus is on the development of a tracking strategy for
BS ; however, the proposed method can be easily extended to
track BU since BU is simply a stable manifold of (2) for t < 0.
We outline our methodology in the following section.

III. METHODOLOGY

Our methodology is inspired by the proper interior maximum
(PIM) triple procedure [18]—a numerical technique designed to
find stationary trajectories in chaotic regions with no attractors.
While the original procedure was developed for chaotic dynam-
ical systems, the approach can be employed to reveal the stable
set of a saddle point of a general nonlinear dynamical system.
The procedure consists of iteratively finding an appropriate PIM
triple on a saddle straddling line segment and propagating the
triple forward in time. We briefly summarize the procedure in
the following section (see [18] for further details).

A. Proper Interior Maximum Triple Procedure

Given the dynamical system described by (2), let D ∈ R2

be a closed and bounded set such that D does not contain any
attractors of (2). Given a point x ∈ D , the escape time of x,
denoted by TE (x), is the time x takes to leave the region D
under the differential map (2).

Let J be a line segment that crosses the stable set BS in
D , i.e., the endpoints of the J are on opposite sides of BS .
Let {xL ,xC ,xR} denote a set of three points in J such that
xC denotes the interior point. Then, {xL ,xC ,xR} is an in-
terior maximum triple if TE (xC ) > max{TE (xL ), TE (xR )}.
Furthermore, {xL ,xC ,xR} is a PIM triple if it is an interior
maximum triple and the interval [xL ,xR ] in J is a proper subset
of J .

Then, the numerical computation of any PIM triple can
be obtained iteratively starting with an initial saddle straddle
line segment J0 . Let xL0 and xR0 denote the endpoints of
J0 , and apply an ε0 > 0 discretizing partition of J0 such that
xL0 = q0 < q1 < · · · < qM = xR0 . For every point qi , deter-
mine TE (qi) by propagating qi forward in time using (2). Then,
the PIM triple in J0 is given by the points {qk−1 ,qk ,qk+1}
where qk = arg maxi=1,...,M TE (qi). This PIM triple can then
be further refined by choosing J1 to be the line segment con-
taining {qk−1 ,qk ,qk+1} and reapplying the procedure with
another ε1 > 0 discretization where ε1 < ε0 .

Given an initial saddle straddling line segment J0 , it has been
shown that the line segment given by any subsequent PIM triple
on J0 is also a saddle straddling line segment [18]. Furthermore,
if we use a PIM triple x(t) = {xL ,xC ,xR} as the initial con-
ditions for the dynamical system given by (2) and propagate the
system forward in time by Δt, then the line segment containing
the set x(t + Δt), Jt+Δt , remains a saddle straddle line seg-
ment. As such, the same numerical procedure can be employed
to determine an appropriate PIM triple on Jt+Δt . This proce-
dure can be repeated to eventually reveal the entire stable set BS

and unstable set BU within D if time was propagated forward
and backward, respectively.

Using the ideas from the PIM triple procedure, our objective
is to devise a cooperative control strategy for a team of N
robots to track the stable (and unstable) manifolds of a general
conservative time-independent flow field F (x). Similar to the
PIM triple procedure, we propose a saddle straddle control
strategy for a team of N ≥ 3 robots. Different from the PIM
triple procedure, our robots will rely solely on information that
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can be gathered via local sensing and shared throughout the
network. In contrast, a strict implementation of the PIM triple
procedure would require the global knowledge of the system
dynamics throughout a given region, since the method relies
on computing escape times. We describe our approach in the
following section.

B. Controller Synthesis

Consider a team of three robots and identify them as robots
{L,C,R}. While the robots may be equipped with similar sens-
ing and actuation capabilities, we propose a heterogeneous co-
operative control strategy.

Let x(0) = [xT
L (0), xT

C (0), xT
R (0)]T be the initial condi-

tions for the three robots. Assume that x(0) lies on the line
segment J0 , where J0 is a saddle straddle line segment and
{xL (0),xC (0),xR (0)} constitutes a PIM triple. Similar to the
PIM triple procedure, the objective is to enable the robots to
maintain a formation such that a valid saddle straddle line seg-
ment can be maintained between robots L and R. Different from
the PIM triple procedure, rather than computing escape times
for points on a saddle straddle line segment, robot C must re-
main close to BS using only local measurements of the velocity
field information provided by the rest of the team. As such, we
refer to robot C as the tracker of the team, while robots L and R
maintain a straddle formation across the boundary at all times.
Robots L and R may be thought of as herding robots, since they
control and determine the actions of the tracking robot.

1) Straddling Formation Control: The controller for the
straddling robots consists of two discrete states: a passive con-
trol state UP and an active control state UA . The robots initial-
ize in the passive state UP where the objective is to follow the
flow of the ambient vector field. Therefore, Vi = 0 for i = L,R.
Robots execute UP until they reach the maximum allowable sep-
aration distance dMax from robot C. When ‖xi − xC ‖ > dMax ,
robot i switches to the active control state UA where the ob-
jective is to navigate to a point pi on the current projected
saddle straddle line segment Ĵt such that ‖pi − pc‖ = dMin
and pC denotes the midpoint of Ĵt . When robots execute UA ,
Vi = ‖a1(pi − xi) − ui‖ and θi(t) = αi(t), where αi is the
angle between the desired and current heading of robot i (as
shown in Fig. 1) and a1 ∈ R is a positive gain. In summary, the
straddling control strategy for robots L and R is given by

Vi =
{

0 if dMin < ‖xi − xC ‖ < dMax
‖a1(pi − xi) − ui‖ otherwise

(3a)

θi =
{

0 if dMin < ‖xi − xC ‖ < dMax
αi otherwise.

(3b)

We note that while the primary control objective for robots
L and R is to maintain a straddle formation across BS , robots
L and R are also constantly sampling the velocity of the local
vector field and communicating these measurements and their
relative positions to robot C. Robot C is then tasked with using
these measurements to track the position of BS .

Fig. 1. Three robots tracking BS in a given conservative vector field. The
blue dash–dot lines represent the individual robot trajectories, the green-dashed
line represents the saddle straddle line segment J , and pL and pR denote the
target positions for L and R, respectively, when executing UP and UA .

2) Manifold Tracking Control: Let ûL (t), ûC (t), and ûR (t)
denote the current velocity measurements obtained by robots L,
C, and R at their respective positions. Let d(·, ·) denote the
Euclidean distance function and assume that d(xC ,BS ) < ε
such that ε > 0 is small. Then, given the straddle line segment Jt

such that xL (k) and xR (k) are the endpoints of Jt , we consider
an εt < ε discretization of Jt such that xL = q1 < q2 < · · · <
qM = xR . The objective is to use the velocity measurements
provided by the team to interpolate the vector field at the points
q1 , . . . ,qM . Since (2) has C 1 continuity and if xC is ε-close to
BS , then the pointqB = arg maxk=1,...,M u(qk )T ûC (t) should
be δ-close to BS where ε < δ < A and A is a small enough
positive constant.

While there are numerous vector field interpolation tech-
niques available [22]–[24], we employ the inverse (squared)
distance weighting method described in [22] since it relies on
information that can be easily obtained via a robot’s onboard
sensors. For a given set of velocity measurements ûi(t) and cor-
responding position estimates x̂i(t), the velocity vector at some
point qk is given by

u(qk ) =
∑

j

N∑
i=1

wij ûi(j)∑
j

∑N
i=1 wij

where wij = ‖x̂i(j) − qi‖−2 . Rather than relying solely on the
current measurements provided by the three robots, it is possible
to include the recent history of ûi(t) to improve the estimate of
u(qk ), i.e., ûi(t − ΔT ), ûi(t − 2ΔT ), and so on, where ΔT
is the sampling period and i = {L,C,R}. Thus, the control
strategy for the tracking robot C is given by

VC = ‖a2 [(qB + bûB ) − xC ] − uC ‖ (4a)

θC = βC (4b)

where βC denotes the difference in the heading of robot C and
the vector (qB − ûB ), a2 ∈ R is a positive gain, and b is a small
number. The term bûB is included to ensure that the control
strategy aims for a point in front of robot C rather than behind
it. As such, the construction of the projected saddle straddle line
segment Ĵt at each time step is such that pc = qC + buC , Ĵt is
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Fig. 2. Errant case illustrating the need for dM ax < ρm in (B∗). Here, L and
R, traversing from left to right, end up on the same side of the boundary and no
longer form a valid saddle straddling line segment.

orthogonal to BS at qC , and the length of Ĵt is between 2dMin
and 2dMax .

C. Remarks

First, it is important to note that while robots L and R execute
the switching controller given by (3), the tracking robot C exe-
cutes the nonswitching control strategy defined by (4). Second,
since the team estimates the location of B∗ by identifying the
location along the saddle straddling line segment Jt , where the
maximum current occurs, robots L and R must maintain the
saddle straddling formation to ensure the team does not lose
track of the boundary. As such, dMax must be chosen such that
ρmin(B∗) > dMax . This is to ensure that sharp turns in B∗ do
not cause robots L and R to end up on the same side of the
boundary/manifold. Fig. 2 illustrates an errant case for which
dMax > ρmin(B∗). In the figure, L and R end up on the same
side of the boundary and cease to maintain a saddle straddling
line segment. Note that in realistic flows, ρmin(B∗) is difficult
to estimate, and, therefore, a suitable dMax must be selected.

Finally, since the tracking strategy relies on identifying the
region along Jt where the maximum current occurs, one way
to improve the estimation of the boundary/manifold location
is to increase the spatial sampling of the flow field around the
neighborhood of the BS . In this study, we achieve this by incor-
porating a recent history of the flow field measurements obtained
by each robot but this can also be achieved by increasing the
number of robots [25] or by instrumenting the robots to enable
simultaneous flow measurements at different points in space.
Therefore, the asynchronous nature of the formation control
strategy executed by robots L and R should not impact the
tracking strategy.

IV. ANALYSIS

In this section, we discuss the theoretical feasibility of the
proposed saddle straddle control strategy. We begin with the
following key assumption on the robots’ initial positions.

Assumption 1: Given a team of three robots {L,C,R},
assume that d(xC (0), BS ) < ε for a small value of ε > 0,
‖xL − xC ‖ = ‖xR − xC ‖ = dMin with dMin > 2r, and robots
L and R are on opposite sides of BS .

In other words, we assume that the robots initialize in a valid
PIM triple formation and the positions form a saddle straddle
line segment that is orthogonal to BS . Our main result concerns
the validity of the saddle straddle control strategy.

Theorem 1: Given a system of three robots with kinematics
given by (1) and ui given by (2), the feedback control strategies
(3) and (4) maintain a valid saddle straddle line segment in the
time interval [t, t + Δt] if the initial position of the robots, x(t),
is a valid PIM triple.

Proof: To show this, we must show that at the end of the
time t + Δt, robots L and R remain on opposite sides of BS .
Consider the rate of change of the following function:

H(xL ,xR ) =
1
2
(xL − xR )T (xL − xR ).

This expression is simply one-half the square of the distance
between robots L and R. Let Jt denote the saddle straddle line
segment defined by xL (t) and xR (t) at t, and let pB be the
intersection of Jt and BS . By construction, if we linearize (2)
about the point pB , then the Jacobian of (2) at pB will have
one positive eigenvalue. Furthermore, the linearized system can
be diagonalized such that the direction of instability lies along
Jt [26]. Thus, d

dt H > 0 in the time interval [t, t + Δt] when
Vi = 0 in (3).

When Vi �= 0 in (3) for i = L,R, d
dt H < 0 if the robots L

and R are moving closer to robot C after reaching the maximum
allowable separation distance. Recall ρmin(BS ) > dMax , the
smallest radius of curvature of BS , and dMin > 2r. Furthermore,
robot C initializes ε-close to the boundary and (4) steers C
toward pC on the Ĵt where Ĵt is orthogonal to BS at xC . This
ensures that the rate of the change of the radius of curvature of
the manifold BS is small enough such that Ĵt intersects with BS

only once. Since dMin > 2r, this ensures that even if d
dt H < 0,

the straddling robots never cross the boundary as they move
closer to the tracking robot. �

The previous theorem guarantees that for any given time in-
terval [t, t + Δt], the team maintains a valid PIM triple forma-
tion. As such, the iterative application of the proposed control
strategy leads to the following proposition.

Proposition 1: Given a system of three robots with kinematics
given by (1) and ui given by (2), the feedback control strategies
(3) and (4) result in an estimate of BS , denoted as B̂S , such that
〈BS , B̂S 〉L2 < W for some W > 0, where 〈·, ·〉L2 denotes the
inner product (which provides an L2 measure between the BS

and B̂S curves).
From Theorem 1, since the team is able to maintain a valid

PIM triple formation across BS for any given time interval
[t, t + Δt], this ensures that an estimate of BS in the given
time interval also exists. Applying this reasoning in a recursive
fashion, one can show that an estimate of BS can be obtained
for any arbitrary time interval. The challenge, however, lies in
determining the bound on W such that B̂S results in a good
enough approximation since W depends on the bounds of the
sensor and actuator noise, the vector interpolation routine, the
sampling frequency, the time scales of the flow dynamics, and
the inherent environmental noise.
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Fig. 3. Trajectories of the three-robot team tracking an (a) sinusoidal boundary
and a (b) star-shaped boundary. The red-dashed line denotes the estimated po-
sition of the desired boundary shown by the solid-black line. The start positions
are shown by the triangles and the end positions are shown by the circle-enclosed
blue triangles.

In the following sections, we validate the proposed tracking
strategy in simulations using analytical and actual flow data. In
recent years, coherent structures have been observed at different
length and time scales [27], [28]. Existing ocean datasets with
well-known LCS boundaries are of the order of tens of kilome-
ters that persist over multiple days to a few months [2], [3], [29].
While real ocean flows are naturally stochastic, quantifying the
uncertainty in actual ocean data and its impact on the proposed
tracking strategy is extremely challenging and outside the scope
of this paper. Therefore, in our experimental analysis, we focus
on the impact of measurement noise on the performance of the
tracking strategy.

V. SIMULATION RESULTS

We illustrate the proposed control strategy described by (3)
and (4) with some simulation results. The strategy is validated
using four distinct flow fields: 1) 2-D static conservative flows;
2) 2-D periodic flows given by a time-dependent wind-driven
double-gyre model; 3) 2-D flow field generated by our mul-
tirobot coherent structure test bed; and 4) ocean current data
obtained from the NCOM database [19]. The results are pre-
sented in the following sections.

A. Time-Invariant Case

We first evaluate the tracking strategy using a three-robot team
tracking static boundaries in conservative flows. Fig. 3(a) shows
the trajectories of three robots tracking a sinusoidal boundary,
while Fig. 3(b) shows the team tracking a star-shaped boundary.
We note that throughout the entire length of the simulation, the
team maintains a saddle straddle formation across the boundary.

In both examples, u was given by

u = −a∇ϕ − b∇× ψ

where a, b > 0 and ϕ is an artificial potential function such that
ϕ(x) = 0 for all x ∈ B∗ and ϕ(x) < 0 for any x ∈ R2/B∗.
The vector ψ is a 3 × 1 vector whose entries are given by
[0, 0, γ(x, y)]T where γ(x, y) is the curve describing the de-
sired boundary [16]. Finally, the estimated position of the bound-
ary is given by the position of the tracking robot, i.e., robot C.

Fig. 4. (a) Phase portrait and (b) corresponding FTLE field for the model
given by (5) with A = 1, μ = 0, ε = 0, ψ = 0, and s = 1.

In these examples, we filtered the boundary position using a
simple first-order low-pass filter.

B. Periodic Boundaries

In this section, we consider the system of three robots with
kinematics given by (1), where ui is determined by the wind-
driven double-gyre flow model, given by

ẋ = −πA sin
(

π
f(x, t)

s

)
cos

(
π

y

s

)
− μx (5a)

ẏ = πA cos
(

π
f(x, t)

s

)
sin

(
π

y

s

) df

dx
− μy (5b)

f(x, t) = ε sin(ωt + ψ)x2 + (1 − 2ε sin(ωt + ψ))x. (5c)

When ε = 0, the double-gyre flow is time-independent, while
for ε �= 0, the gyres undergo a periodic expansion and contrac-
tion in the x-direction. In (5), A approximately determines the
amplitude of the velocity vectors, ω/2π gives the oscillation
frequency, ε determines the amplitude of the left–right motion
of the separatrix between the gyres, ψ is the phase, μ determines
the dissipation, and s scales the dimensions of the workspace.
Fig. 4(a) shows the phase portrait of the double-gyre model for
ε = 0, and Fig. 4(b) shows the corresponding FTLE ridges.

Fig. 5 shows the use of the control strategies (3) and (4) to
track the LCS of the periodic double-gyre model. As mentioned
briefly in Section I, LCSs are extensions of stable and unstable
manifolds to nonautonomous dynamical systems [30]. Details
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Fig. 5. Trajectories of the team of three robots tracking the LCSs of the system described by (5) with A = 0.2, μ = 0.005, ε = 0.1, ψ = 0, I = 0.001, ω = π
3 ,

and s = 1. The FTLE integration time is T = 4.5. The trajectories of the robots are shown in white and the estimated LCS corresponds to the trajectory of the
center robot. In this simulation, the average velocity of the team is roughly twice the mean velocity of the underlying flow field. To give a sense of time scale
for the flow, most tracer particles have recirculated through the gyre after 6 s. (a) t = 0.05. (b) t = 0.45. (c) t = 0.85. (d) t = 1.25. (e) t = 1.65. (f) t = 2.05.
(g) t = 2.45. (h) t = 2.85.

regarding the computation of the LCS can be found in [5] (see the
supplementary multimedia file for a movie of the full simulation
run). We note that while the control strategy was developed for
static flows, the movie shows the robustness of the strategy for
tracking LCS in time-varying flows.

To simulate the effect of measurement noise on the robustness
of the control strategy, the flow velocities as measured by each
robot are given by

ui = ẋ + ηxi
(t) (6a)

vi = ẏ + ηyi
(t) (6b)

for i = {L,C,R}, where ẋ and ẏ are given by (5) and where
ηxi

(t) and ηyi
(t) describe stochastic white noise terms with

mean zero and standard deviation σ =
√

2I , for noise intensity
I . A series of simulations were performed with varying noise
intensities I in (6). Fig. 6 shows the resulting tracks for different
values of I . In these simulations, the remaining parameters are
identical to the simulation presented in Fig. 5. In our simulations,
the mean component velocity magnitude of the entire flow is
0.42, and the maximum component velocity magnitude is 0.76.
We can see that the team tracks the boundaries reasonably well
even with I = 0.05. This corresponds to a standard deviation of
0.32 for the noise, which is almost the magnitude of the mean
velocity in the flow. This shows that even with significant noise,
the team is still able to maintain a straddling formation across
the boundary.

To further quantify the effect of noise on the tracking strategy,
we simulated many tracking runs for varying values of I (with all
parameters identical to the previous simulations) and recorded
the number of instances (indicated by Nfail) for which the team

TABLE I
VARYING NOISE INTENSITIES AND CORRESPONDING NUMBER OF

FAILURES TO MAINTAIN STRADDLING FORMATION

failed to maintain a valid straddling formation after 1.5 s. The
results are tabulated in Table I.

C. Experimental Flow Data

1) Background: In the results presented in the previous sec-
tions, the current measured by each vehicle is provided by the
analytical models. For the results presented in this section and
the following section, current velocities are provided at specific
locations in the workspace. These locations are predefined and
arranged in a grid within the region of interest which is set a
priori by the measurement process. Thus, we employ a trilinear
interpolation scheme in the two spatial dimensions and the time
dimension to determine the current experienced/measured by
each vehicle located at positions not defined on the grid. While
more advanced multivariate interpolation schemes are available
(e.g., tricubic), we have found that the trilinear scheme results in
sufficiently smooth data for the LCS tracking and for the com-
putation of FTLEs ridges. Indeed, it has been found that FTLE
maxima are relatively insensitive to the interpolation scheme
used for the computation [29].

The time-dependent double-gyre flow model given by (5)
has many properties that are of interest for tracking LCS. The
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Fig. 6. Trajectories of teams of three robots performing tracking as in Fig. 5, but with increasing sensor noise intensities. In all frames, t = 1.7 and measurement
noise is modeled as zero-mean Gaussian with σ =

√
2I . It can be seen that tracking fails with sufficiently high measurement noise. (a) I = 0. (b) I = 0.005.

(c) I = 0.05. (d) I = 0.5.

model contains clear separatrices, which divide the flow into
distinct regions. FTLE values for areas near the separtrices are
thus high, indicating high divergence of particles starting on
either side of the boundary. The FTLE field for a typical time-
invariant double-gyre flow can be seen in Fig. 4(b). For 2-D
flows, ridges of locally maximal FTLE values correspond, to
a good approximation (see [31]), to LCS. Because of these
features, we have developed an experimental test bed capable of
generating controllable flow fields in a laboratory setting based
on the double-gyre model.

2) Experimental Data: To create a more realistic experi-
mental platform, we require a larger flow field in which more
unsteady higher Reynolds number flows can be generated, still
with some degree of control over perturbations. At Reynolds
numbers in the range Re > O(104), sheared flows such as mul-
tiple gyres will exhibit strongly nonlinear response to driving
and display complex, time-dependent flow patterns. Neverthe-
less, we must be able to control the coarse features of the flows,
such as the mean sizes and locations of the gyres and their
boundaries—in other words, the transport controlling features.

Toward that end, we have constructed a 60 × 60 × 30 cm3

acrylic flow tank [32]. Desired flow fields are created using 12
geared dc motors each attached to an acrylic cylinder approxi-
mately 6 cm in diameter and 12 cm in height. The motors are
equipped with encoders to allow closed-loop control over the
speed and direction. Each motor is thus independently control-
lable in order to allow the creation of complex time-varying
flows. The motorized cylinders are mounted perpendicular to
the bottom of the flow tank as shown in Fig. 7.

To generate the desired flow field, the tank was filled with
water to a height of 14 cm. A time-invariant flow field was
created by arranging the motors in a 4 × 3 grid and setting
each motor to rotate in a sense opposite to that of its immediate
neighbors. To track the flow velocity, particle image velocimetry
(PIV) was employed using small paper tracer particles spread
throughout the water surface. A typical output velocity field and
the corresponding FTLE field are shown in Fig. 8.

Fig. 9 shows the trajectories of a three-robot team using the
control strategies (3) and (4) to track the coherent structures gen-
erated in our experimental test bed. In these experiments, all the
rotating cylinders were set at constant speed; as such, the coher-
ent structures in the flow are approximately time-independent
but stochastic. Quantitative analysis and comparison of the ex-

Fig. 7. Motor/cylinder unit (a) used to create controlled flows and (b) the
experimental flow tank.

Fig. 8. (a) PIV-derived velocity field in the experimental flow tank and
(b) corresponding FTLE field, with locations of the 12 rotating cylinders
overlayed.

perimental flow data with the analytical gyre model show good
correspondence and is described in [32]. See the supplementary
video of this tracking strategy in action.

D. Ocean Flows

Finally, we implemented the control strategies (3) and (4) on
a three-robot team using ocean data provided by the NCOM
database hosted by the Scripps Institution of Oceanography at
the University of California, San Diego, CA, USA [19].

Specifically, we considered the Santa Barbara Channel along
the California coast. This area is instrumented with several high-
frequency radar stations, which provide hourly surface current
measurements on a 2-km grid. Fig. 10 shows a snapshot of the
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Fig. 9. Trajectories of three simulated robots tracking a coherent structure using data obtained from the experimental test bed. In this simulation, the average
velocity of the robots is slightly higher than the mean velocity of the underlying flow. To give a sense of time scale, tracer particles take roughly 10 s to recirculate
through the gyres. (a) t = 0. (b) t = 0.8. (c) t = 1.6. (d) t = 2.4. (e) t = 3.2. (f) t = 4.0. (g) t = 4.8. (h) t = 5.6.

Fig. 10. (a) Surface ocean velocity data for the Santa Barbara Channel ob-
tained via high-frequency radar measurements and (b) the corresponding FTLE
field computed with an integration time of 24 h. Red hues denote high FTLE
values, while blue hues denote low values.

measured velocity field and the associated FTLE field for the
Santa Barbara Channel during a strong eddy event in May 2012.
This area is interesting because there is a recurring small-scale
eddy (roughly 40 km in diameter), which appears between the
Channel Islands and the mainland. This eddy results in an area
of highly divergent flow stringing between the mainland and
San Miguel Island, which can be easily seen as a ridge of high
FTLE values in Fig. 10(b).

We use the actual radar-derived surface velocities as the un-
derlying vector field for a team of three simulated AUVs/ASVs
to track the Santa Barbara FTLE ridge. In our simulations, we
first compute the appropriate waypoints for the AUVs/ASVs
team and determine the appropriate control inputs. This strat-
egy is a slight modification to the proposed strategy and was
chosen as a way to smooth out the heading commands for the

robots. This slight modification also provides a more realistic
strategy amenable for use with actual AUVs/ASVs.

We simulated our tracking strategy in this region over a 28-h
window using data from May 16, 2012 08:00:00 GMT to May
17, 2012 12:00:00 GMT. Fig. 11 shows the team of three robots
tracking a strong LCS stringing between the mainland and San
Miguel Island. Even with a relatively poor initial guess of the
LCS location, the team quickly forms a straddling formation
and tracks the strong LCS while traversing southward. We have
observed several instances where this type of persistent LCS
remains across the mouth of the Santa Barbara Channel for
several days. Because of its long duration, revealing LCS such
as this one is useful for predicting transport phenomena at useful
time scales.

VI. DISCUSSION

In this paper, we have described a control strategy that allows
collaborating robots to track coherent structures and manifolds
on general static conservative flows. In addition, we showed
how the strategy can be used to track LCS in time-dependent
flows as well as experimental and actual ocean flows. The saddle
straddle control strategy is based on the communication of local
velocity field measurements obtained by each robot. Using the
local velocity field information provided by the two straddling
robots (the herders), one robot (the tracker) is able to detect the
coherent structures, a global structure that delineates the phase
space into different dynamical regions. Moreover, only initial
state knowledge of the LCS is required locally to get an accurate
prediction of the global structure. Our study is novel in that the
robots are determining the location of a global structure based
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Fig. 11. Three simulated robots tracking an LCS off the coast of California over a 28-h window. The ocean surface velocities are provided by high-frequency
radar measurement stations along the coast. (a) t = 0 h. (b) t = 4 h. (c) t = 8 h. (d) t = 12 h. (e) t = 16 h. (f) t = 20 h. (g) t = 24 h. (h) t = 28 h.

solely on local information, and to the best of our knowledge,
tracking LCS in the ocean has never been performed using
autonomous vehicles.

While the cooperative control strategy was inspired by the
PIM triple procedure, a procedure that relies on the computa-
tion of escape times, which is a global property of the system,
the controller itself only relies on information provided by each
robot’s onboard sensors. We also note that the realization of the
control strategy by the team of robots can be achieved with-
out the need for global localization information. As such, the
strategy is a purely local strategy. Furthermore, the cooper-
ative control strategy was derived to track the manifolds on a
static flow, but performs surprisingly well at tracking the LCS in
time-varying and stochastic flows, in the presence of large mea-
surement noise, as well as in an actual coastal ocean situation.
While this study focused on the validation of the three-robot
PIM-triple-inspired tracking strategy on various flow fields, it
is possible to extend this approach to larger team sizes [25].
In [25], robots L, C, and R become leaders of the team and the
additional agents, or followers, take measurements of the flow
and evolve under a formation control strategy prescribed by the
positions of robots L, C, and R.

From our experimental test bed results, we noticed that the
robots tend to veer away from the tracked LCS as they approach
a local saddle/hyperbolic point in the flow. This is likely be-
cause as the team approaches the saddle point from one side,
the flow reverses direction on the other side of the saddle point.
As such, the robots are temporarily “pushed away” from the
hyperbolic point. This can be seen from Fig. 8(b) where hy-
perbolic/saddle points are located in the middle of every set of
four rotating cylinders. Similarly, our results using actual ocean
flows show the robots veering away from the weakening and
expanding LCS curve as they move southward. This seems to

indicate that the tracking strategy in its present form may only
be most suitable for prominent structures that are well defined
and persistent. Indeed, tracking prominent structures may be
more useful than weaker more transient LCSs that have a less
direct impact on transport in the time scales of interest for most
robotic applications.

Finally, the tracking strategy was formulated in the context
of conservative flows. Since experimental and natural flows are
typically nonconservative, our experimental and ocean tracking
results (see Figs 9 and 11) show the robot team having diffi-
culty maintaining a straddling formation toward the end of their
tracks. This could be a consequence of the fact that these flows
are not conservative, and thus the saddle straddling formation
cannot be guaranteed for all times. Further inquiry is needed to
better understand the impact of nonconservative flows on the
tracking strategy.

VII. FUTURE WORK

In recent years, there has been significant interest in the de-
ployment of AUVs to collect scientific data in the ocean that
can impact our ability to predict harmful algal blooms, contam-
inant transport, and forecast weather and climate patterns. One
drawback to operating sensors in time-dependent and stochastic
environments like the ocean is that the sensors will tend to es-
cape from their monitoring region of interest. As such, the abil-
ity to identify and track LCSs in these dynamic environments is
highly useful to maintain appropriate sensor coverage in specific
regions of interest. Additionally, since LCSs have been shown
to coincide with optimal trajectories in the ocean, which mini-
mize the energy and the time needed to traverse from one point
to another [3], [4], real-time knowledge of these “superhigh-
ways” is key in planning efficient paths for AUVs. While ocean
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current data can be obtained from a variety of sources, e.g., satel-
lite sensing, ocean drifters, and high-frequency radar sensing,
the data are often of low-spatiotemporal resolution and may suf-
fer from coverage loss due to weather conditions, maintenance,
etc. In addition, the long FTLE integration times required to
reveal important structures in these data can cause numerical
issues [29]. As such, it is of great interest to be able to locate
and track LCS in areas of the ocean where sufficient velocity
data coverage does not exist.

Our results show that the proposed tracking strategy can suc-
cessfully track LCS present in a variety of flow fields. These at-
tempts seem to suggest that our methods may be general enough
to be applied to more complicated flow models, including mul-
tilayer PDE ocean models. As mentioned in Section IV, the
robustness of the control strategy is dependent on numerous
parameters in the system, which includes the robots’ sensing
and communication ranges, the bounds on the sensor and ac-
tuation noise, the vector interpolation technique, the sampling
frequency, and the relative time scales of the AUV dynamics
in relation to the surrounding flow dynamics. We believe a bet-
ter understanding of the sensitivity of the proposed strategy to
these various parameters will be instrumental in extending our
approach to more realistic ocean conditions.

A major challenge in LCS tracking using the strategy pre-
sented is surmising the initial location of the LCS curve. This
initial formation may be difficult to achieve with no prior global
knowledge of the flows. By considering a team of both station-
ary and mobile sensors, one can potentially obtain an initial
estimate of a local LCS through the stationary sensing network,
which can then be tracked and further refined by the mobile
nodes. Of particular interest is how we can extend our method
to a swarm of heterogeneous mobile and stationary sensors (see
for example [33]). Another direction for future work is to in-
vestigate how the proposed strategy scales to larger team sizes
and how communication delays impact the overall accuracy of
the tracking methodology. Additionally, we are also interested
in determining how one can strategically place a combination
of mobile and stationary sensors to provide real-time updates
on the locations of LCS [20]. We believe the ability to track
and potentially predict key LCS positions can lead to significant
advances in the field of optimal path planning for autonomous
vehicles operating in the ocean.

Finally, while the tracking strategy was formulated in the
context of conservative flows, we have found that the strat-
egy works surprisingly well in nonconservative flows. Fur-
ther investigation is needed to better understand how we can
achieve similar performance with provably correct guarantees
in general nonconservative flows. In conclusion, while there
are existing strategies to use networks of robots and sen-
sors to track interesting phenomena in the coastal ocean [34],
our strategy emphasizes the use of very limited local infor-
mation about the flow to predict important global features.
It is our hope that this reliance on very limited information
will enable the development of more general techniques that
can be implemented on realistic AUVs/ASVs for future field
deployments.
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