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Abstract We present the synthesis and analysis of distributed ensemble control
policies to enable a team of robots to control their distribution across a collection of
tasks. We assume individual robot controllers are modeled as a sequential composi-
tion of individual task controllers. A macroscopic description of the team dynamics
is then used to synthesize ensemble feedback control strategies that maintain the
desired distribution of robots across the tasks. We present a distributed implementa-
tion of the ensemble feedback strategy that can be implemented with minimal com-
munication requirements. Different from existing strategies, the approach results
in individual robot control policies that maintain the desired mean and the vari-
ance of the robot populations at each task. We present the stability properties of the
ensemble feedback strategy, verify the feasibility of the distributed ensemble con-
troller through high-fidelity simulations, and examine the robustness of the strategy
to sensing and/or actuation failures. Specifically, we consider the case when robots
are subject to estimation and navigation errors resulting from lossy inter-agent wire-
less communication links and localization errors.

1 Introduction

In the last ten years, there has been significant interest in applying a swarming
paradigm to the control and coordination of large robot teams where individuals
are programmed with simple and identical behaviors that rely solely on limited on-
board computational, communication, and sensing resources. This has lead to much
progress in the development of collective motion control and/or consensus forming
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strategies for homogeneous teams that often come with rigorous theoretical guar-
antees [2,3,15,21]. However, applications, such as automated transportation, ware-
house automation, environmental monitoring, and search and rescue, invariably re-
quire the allocation of the team across various subtasks. Existing swarm-inspired
paradigms fail to address the effects caused by splitting the team across multiple
tasks which inevitably leads to relatively small numbers of locally collaborating
robots. The presence of these smaller scales motivates the need for multi-robot style
techniques that remain amenable to whole-team analysis.

In this work, we address the dynamic allocation of a team of robots to a col-
lection of spatially distributed tasks. This is similar to the multi-task (MT), single-
robots (SR), time-extended assignment (TA) problem [7]. In the multi-robot domain,
market-based approaches [5, 6] have been successful and can be further improved
when learning is incorporated [4]. Nevertheless, these methods often scale poorly in
terms of team size and number of tasks [5, 10]. Furthermore, in applications where
inter-agent wireless communication is limited, e.g., underwater applications, it is
often difficult to devise reliable strategies to ensure timely communication of the
various local costs and utilities required by these existing allocation approaches.
Different from these existing works, we present a strategy where an appropriate
macroscopic description of the ensemble dynamics is used to simultaneously ad-
dress the allocation and controller synthesis problems for the team.

While macroscopic continuous models have been employed to model the en-
semble dynamics of robotic self-assembly [13, 22] and robotic swarm systems
[1, 14, 17, 18], existing strategies mostly focus on developing macroscopic mod-
els to analyze the effects of microscopic, or agent-level, behaviors on the overall
performance of the team. In these works, the continuous population models are ob-
tained by representing the individual robot controllers as probabilistic finite state
machines and approximating the dynamics of the collective as a continuous-time
Markov process. More recently, we have employed a macroscopic description of the
ensemble dynamics to synthesize distributed agent-level control policies to dynam-
ically allocate the team to the various tasks [19]. Different from existing strategies,
this approach enables the team to actively shape both the mean and variance of the
distribution of robots across the different tasks [19] and can be further extended to
incorporate the dynamics of the communication network [20]. Since the complex-
ity of the proposed strategy only depends on the number of tasks at runtime, the
resulting decentralized robot controllers become invariant to team size.

Building on the multi-site allocation problem, first presented in [11], and our re-
cent result [19], we consider the allocation problem in the presence of communica-
tion and sensing errors. We limit our discussions to homogeneous teams of robots1

and represent the agent-level controller as a sequential composition of individual
task controllers. Similar to [1,14], we design stochastic transition rules to enable the
team to autonomously achieve a desired distribution across the various tasks. Differ-
ent from [1,14], the proposed agent-level control policies set both the mean and the
variance of the robot populations at each tasks [19]. Inspired by Klavins’s work on

1 For extensions to heterogeneous teams of robots, we refer the interested reader to [20].



controlling gene population dynamics [16], we model the simultaneous execution
of spatially distributed tasks by a team of robots as a polynomial Stochastic Hy-
brid System (pSHS) and employ moment closure techniques to model the moment
dynamics of ensemble distribution [12]. We analyze the stability of the resulting
strategies and the robustness of ensemble strategy in the presence of communica-
tion and sensing errors. The main contribution is a team-size invariant approach
towards the design of distributed agent-level control policies that can affect both the
mean and the variance of the robot ensemble distribution. Since the strategies are
stochastic, we show that they are also robust to communication and sensing errors.
The result is a distributed allocation strategy that has the ability to respond to robot
failures in a natural way, ensuring graceful degradation.

The paper is structured as follows: We formulate our approach in Section 2 and
describe the synthesis and analysis of our ensemble feedback strategy in Section
3. Section 4 describes the distributed implementation of our macroscopically de-
rived feedback controller in the presence of full communication and when robots
rely solely on local communication. Section 5 presents our simulation results. We
conclude with a discussion of our results and directions for future work in Sections
6 and 7 respectively.

2 Problem Formulation

Consider the assignment of N robots to execute M tasks each located at a differ-
ent locale within the workspace. The objective is to synthesize decentralized single
robot controllers that enable the team to autonomously distribute across the M tasks
and maintain the desired allocation at the various locales. Different from [1,14], the
goal is to design distributed agent-level control policies that can affect the means
and the variances of the robot populations at each task/site.

2.1 Individual Robot Controller

Given a collection of {1, . . . ,M} tasks/sites, we use a directed graph, G = (V ,E ),
to model the pairwise precedence constraints between the tasks. Each task is repre-
sented by a vertex in V = {1, . . . ,M}. A directed edge exists between two vertices
(i, j) ∈ V ×V if task i immediately precedes task j and we denote this relation as
i≺ j. Then, the set of edges, E , is given by E = {∀(i, j)∈V ×V |i≺ j}. We assume
G is a strongly connected graph, i.e., a directed path exists for any i, j ∈ V .2

Given the M tasks, we denote the set of task controllers for each task as
{U1, . . . ,UM} and assume that the single robot controller is obtained through the

2 We assume the relation ≺ is not transitive so as to allow for cycles to exist in G such that G does
not have to be a complete graph.



sequential composition of {U1, . . . ,UM} such that the precedence constraints speci-
fied by G are satisfied. We represent the robot controller as a finite state automaton
where each automaton state i is associated with a task controller Ui. Figure 1 shows
an example robot controller where the arrows denote state transitions that satisfy the
constraints specified in G .

In this work, we consider the surveillance of M sites where the team must main-
tain some desired allocation of the robots across the various locations. Robots are
tasked to monitor each site for a pre-specified amount of time, i.e., execute Ui. Once
the task is completed, robots must navigate to the next adjacent site based on the
constraints encoded in G . As such, we assume each robot has complete knowledge
of G , the ability to localize within the workspace, and is capable of navigating from
one task/site to another while avoiding collisions with other robots in the workspace.

Fig. 1 (a) The robot controller. The robot changes controller states based on guard conditions.
(b) Graphical representation of the equivalent chemical reaction network for a robot ensemble
executing the tasks.

2.2 The Ensemble Model

For a team of N robots, each executing the same sequentially composed controller,
e.g., the one in Figure 1, the ensemble dynamics can be represented by an equivalent
chemical reaction network. This abstraction allows us to model the multi-task/site
allocation as a polynomial stochastic hybrid system (pSHS) and to use moment clo-
sure techniques to model the time evolution of the distribution of the team across
the various tasks/sites.

Let Xi(t) denote the number of robots executing task i or located at site i. In this
work, task execution happens at the site where the task is located and as such we
will not distinguish between robots executing task i and robots located at the site
where task i is located, i.e., site i. Let X̄i denote the desired number of robots for
task i. The system state is given by X(t) = [X1(t), . . . ,XM(t)]T with the desired dis-
tribution of the ensemble given by X̄ = [X̄1, . . . , X̄M]

T . Since the tasks are spatially
distributed and robots must navigate from one site to another while avoiding colli-
sions with other robots, we model the variability in robot arrival times at each task
using transition rates. For every edge (i, j)∈ E , we assign constant ki j > 0 such that



ki j defines the transition probability per unit time for one agent from site i to go to
site j.

Given G and the set of ki j’s, we model the ensemble dynamics as a set of chemi-
cal reactions of the form:

Xi
ki j−→ X j ∀ (i, j) ∈ E . (1)

The above reaction represents a stochastic transition rule with ki j as the per unit
reaction rate and Xi(t) and X j(t) as discrete random variables. In the robotics setting,
equation (1) implies that robots at site i will transition to site j with a rate of ki jXi.
Further, we assume the ensemble dynamics is Markov which allow us to model the
moment dynamics of the distribution as a set of linear differential equations. It is
important to note that in general ki j 6= k ji and ki j encodes the inverse of the average
time a robot spends at task/site i.

2.2.1 Moment Closure

Given the set of reactions in (1), the moment equations for the discrete random
variable Xi is given by the extended generator of the system [12]. For a real-valued
function ψ(Xi), the extended generator is an expression for the time derivative of
the expected value of ψ , i.e., d

dt E[ψ(Xi)] = E[Lψ(Xi)], and takes the form

Lψ(Xi) = ∑
j
[(ψ(Xi−1)−ψ(Xi))wi j +(ψ(Xi +1)−ψ(Xi))w ji] . (2)

The right hand side of (2) gives the continuous time derivatives of the system for
a discrete change in the state Xi. The expression [ψ(Xi−1)−ψ(Xi)] represents the
change in ψ given a unit change in the discrete variable Xi, while wi j represents the
rate at which the change occurs. For the system given by (1), wi j = ki jXi. To obtain
the rate of the change of the expected value of Xi, d

dt E[Xi], we let ψ(Xi) = Xi in (2).
Similarly, to obtain d

dt E[X2
i ], we let ψ(Xi) = X2

i .

Example 1. Consider the case when M = 2, i.e.,

X1
k12−−⇀↽−−
k21

X2

where robots executing task 1, X1, transition to task 2, X2, and vice versa with rates
k12X1 and k21X2 respectively. The first and second moment dynamics for X1 are
given by



d
dt E[X1] = E

[
((X1 +1)−X1)k21X2 +((X1−1)−X1)k12X1

]
= k21E[X2]− k12E[X1] and

d
dt E[X2

1 ] = E
[
((X1 +1)2−X2

1 )k21X2 +((X1−1)2−X2
1 )k12X1

]
=−2k12E[X2

1 ]+2k21E[X1X2]+ k21E[X2]+ k12E[X1].

When the wi j’s are linear with respect to the system state X, the moment
equations are closed. This means that the time derivative for the first moment of
Xi, d

dt E[Xi], is only dependent on the first moments of Xi for i = 1, . . . ,M, i.e.,
E[X1], . . . ,E[XM], the second moments are dependent on the first and second mo-
ments, and so on and so forth. This is important because when the moment equa-
tions are closed, the moment dynamics can be expressed as a linear matrix equation
as follows:

d
dt

[
E[X1 ]
E[X2 ]

E[X1X1 ]
E[X2X2 ]
E[X1X2 ]

]
=

[
−k12 k21 0 0 0
k12 −k21 0 0 0
k12 k21 −2k12 0 2k21
k12 k21 0 −2k21 2k12
−k12 −k21 k12 k21 −k21 − k12

][
E[X1 ]
E[X2 ]

E[X1X1 ]
E[X2X2 ]
E[X1X2 ]

]
. (3)

The steady state solution to the above equation lies in the nullspace of the co-
efficient matrix. The solution is unique if we consider the conservation constraint
X1+X2 = N, i.e., the number of robots within the system is constant. For this exam-
ple, the steady state solution is a binomial distribution with the probability for robots
to be at site 1 (or executing task 1) given by p1 = k21(k12 + k21)

−1, and the mean
and variance given by, E[X ] = N p1 and E[(X−E[X ])2] = N p1(1− p1) respectively.

In general, the ensemble moment dynamics for the system with M tasks/sites is
given

d
dt E[X ] = KE[X ]

d
dt E[XXT ] = KE[XXT ]+E[XXT ]KT +Γ (α,E[X ])

(4)

where [K]i j = k ji and [K]ii =−∑(i, j)∈E ki j. It is important to note that K is a Markov
process matrix and thus is negative semidefinite. This coupled with the conservation
constraint ∑i Xi = N leads to exponentially stability of the system given by (4) [11,
16]. Each entry in the matrix of second moments is determined from the moment
closure methods shown above where the entries of Γ (α,E[X ]) are all linear with
respect to the ki j’s and the means E[X ]. For the two state example given by equation
(3), Γ (α,E[X ]) is defined as

Γ (α,E[X ]) =
[

k12E[X1]+k21E[X2] −k12E[X1]−k21E[X2]
−k12E[X1]−k21E[X2] k12E[X1]+k21E[X2]

]
.

Furthermore, the ki j’s can be chosen to enable a team of robots to autonomously
maintain some desired mean steady-state distribution of the team across the various
tasks/sites [1, 11, 14]. In essence, the ki j’s translate into a set of stochastic guard
conditions for the single robot controllers. The result is a set of decentralized agent-
level control policies that allow the team to maintain the steady-state mean of the



ensemble distribution. Different from previous work, the focus of this paper is to use
the ensemble moment dynamics to synthesize distributed control strategies to enable
the team to maintain both the mean and the variance of the robot team distribution
across the various tasks/sites. We describe the approach in the following sections.

3 Ensemble Controller Design

As shown with equation (1), the rate in which agents in state Xi transition to X j
depends on the population in state Xi. As such, the more agents in state Xi, the faster
they transition to X j. However, Klavins recently showed that if we allow for both
positive and negative transition rates, it is possible to shape both the mean and the
variance of the ensemble distribution [16]. In other words, by introducing a negative
feedback rate, it is possible to slow the population growth at a given state and thus
affect the population variance in that state.

3.1 Controller Synthesis

Consider the following single reaction X1
α12−−→ X2 with the corresponding moment

equation for X1 given by d
dt E[X1] = −α12E[X1]. If we add a negative feedback of

the form u = −βX2 such that the “closed-loop” reaction becomes X1
α12−βX2−−−−−→ X2,

then the moment dynamics with state feedback is given by E[X1] = −α12E[X1] +
βE[X1X2] will depend on the covariant moment E[X1X2]. Such a feedback control
law breaks the linearity of the moment equations because the moment dynamics are
not closed.

To ensure that the moment dynamics with state feedback remain closed, consider
the following feedback controller

u = β
X2
X1
. (5)

The reaction with state feedback becomes X1

α12−β
X2
X1−−−−−−→ X2 where (5) can be seen

as a form of linearizing feedback control that inhibits transitions from X1 to X2 as
X2 becomes larger than X1. For the two state system described in Example 1, the
closed-loop reactions become

X1

α12−β12
X2
X1−−−−−−−⇀↽−−−−−−−

α21−β21
X1
X2

X2 (6)

and the corresponding closed-loop first and second moment dynamics for X1 be-
come



d
dt E[X1] =(α21 +β12)E[X2]− (α12 +β21)E[X1],

d
dt E[X2

1 ] =(α21−β12)E[X2]+ (α12−β21)E[X1]

+2(α21 +β21)E[X1X2]−2(α12 +β12)E[X2
1 ].

(7)

where the steady-state values of E[X1] and E[X2
1 ] can be independently set by ad-

justing parameters α and β .
In general, for the M state system described by (4), we propose the following

ensemble feedback controller

u =−Kβ E[X ] Ki j
β
=


β ji ∀(i, j) ∈ E

−∑ (i, j)∈E β ji ∀i = j

0 otherwise

, (8)

resulting with the following closed-loop moment dynamics

d
dt E[X ] =(Kα +Kβ )E[X ]

d
dt E[XXT ] =(Kα +Kβ )E[XXT ]+E[XXT ](Kα +Kβ )

T +Γ (α,β ,E[X ]). (9)

The above equations are obtained by simply substituting ki j = αi j − βi j
X j
Xi

in the
reactions given by (1) and applying the extended generator to ψ(Xi) = Xi.

3.2 Analysis

In this section, we show the stability of the ensemble feedback controller.

Theorem 1. The dynamics of the first moment of the system with ensemble feedback
strategy given by (9) is stable.

Proof. The first moment dynamics for the system with ensemble feedback is given
by (9)

d
dt E[X ] = Kα E[X ]+Kβ E[X ]

.
Since both Kα and Kβ are Markov process matrices, they are negative semidef-

inite, each with a zero eigenvalue of multiplicity one. Furthermore, the eigenvector
associated with the zero eigenvalue is the vector 1 such that 1T K(·) = 0. The sum
of two negative semidefinite matrices is still negative semidefinite and thus the first
moment dynamics of the closed-loop system given by (9) is stable.

It is important to note that the rate of population exchange in the model allows
for backwards flow when βi jX j > αi jXi. In the systems that we are considering,
we restrict this rate to be greater than or equal to zero. A rate of zero implies that
no robots are executing that transition. This case requires a bit more work to show



stability of the ensemble feedback strategy if only due to the saturation of the control
inputs required to ensure βi jX j ≤ αi jXi.

4 Distributed Implementation

In this section we present the distributed implementation of the proposed ensemble
feedback strategy given by equation (8) in the cases when robots have 1) full and
infinite range communication and 2) local and finite range communication.

4.1 Full Communication

The feedback strategy (8) gives robots in state Xi the ability to set their own state
transition rates to be independent from the number of robots in Xi. This, however,
requires robots at task i to know how many robots are at adjacent sites, i.e., robots in
X j where (i, j) ∈ E . We begin with the assumption that individual robots have full
knowledge of the ensemble states X(t) = [X1(t), . . . ,XM(t)]. In practice, this can be
achieved by endowing each task site the ability to track the number of robots at
the site and the ability to communicate with adjacent task sites. To obtain timely
estimates of the ensemble states, robots would only need to communicate with their
current task site.

Algorithm 1 describes the implementation of the individual robot controller
shown in Figure 1 where U (0,1) denotes a continuous uniform distribution be-
tween 0 and 1. The algorithm consists of two parts. In Lines 1-14, the robot exe-
cutes task i and determines the time it stays with task i, Ti, from the set of ki j’s. In
Lines 16-19, the robot determines the next task to execute after completing task i.
Lines 16-19 of Algorithm 1 is necessary for the general case when task i can be
followed by multiple tasks. To determine Ti, robots first calculate the sum of all the
exit rates, ∑∀i ki j, from i (Line 3). This total rate represents the rate a single robot
leaves task i for j and is used to calculate the time a robot spends executing task
i, i.e., Ti. If a new robot arrives at task/site i or an existing one leaves, the robot
recalculates Ti. The feedback controller given by Equation (8) is implemented by
assigning ki j = αi j−βi j

X j
Xi

in Line 3 for all i, j pairs and Xi,X j is obtained through
local communication between the robot and site i.

We note that from the ensemble view, the parallel execution of Algorithm 1 by
the team of N robots is akin to the parallel execution of N stochastic simulation
algorithms first proposed by Gillespie in [8]. Since the times a robot spends at a
task/site are all exponentially distributed and memoryless, the process of gaining
and losing robots at the site is a birth-death process which allows for the constant
resetting of Ti.



Algorithm 1 Robot Controller w/ Full Communication
1: initialize taskController =Ui
2: initialize all αi js and βi js
3: kΣ i = ∑∀(i, j)∈E ki j

4: Ti = ∑∀{i, j}∈E
1

kΣ i
ln 1

U (0,1)
5: repeat
6: execute taskController
7: if a new robot arrives at current site i then
8: Xi = Xi +1
9: goto 1

10: end if
11: if a robot leaves current site i then
12: Xi = Xi−1
13: goto 1
14: end if
15: until t ≤ Ti
16:
17: j = sample[ ki1

∑∀(i, j)∈E ki j
, · · · , ki j

∑∀(i, j)∈E ki j
, · · · ]

18: taskController =U j
19: X j = X j +1
20: i = j
21: goto 3

Example 2. Consider the example when M = 3. The equivalent chemical reaction
network representation of the ensemble model is shown in Figure 7 in the Appendix.
The full equation of the closed-loop first and second moment dynamics are is given
by Equation (11), also in the Appendix. The values for the αi j’s and βi j’s were cho-
sen to achieve the desired population distribution mean of E[X ] = [10,15,5] and
variance of Var[X ] = [4,4,2] at each site. These values are shown in Table 4 in the
Appendix. By adjusting the ratios of the αi j’s and βi j’s, we were able to maintain
the same mean behavior while reducing the on-site population variance and simulta-
neously speeding up the closed-loop system’s convergence rate. Figure 2 shows the
distribution of the ensemble at each of the three sites with and without the ensemble
feedback strategy given by Equation (8).

4.2 Local Communication

In practice, is it often unreasonable to assume global communication among the
robots, especially when tasks are distributed across vast geographic regions or in lo-
cated in environments where long-range communication is difficult/impossible, e.g.,
underground/underwater environments. In this section, we present a decentralized
implementation of the proposed ensemble feedback control strategy given by equa-
tion (8) that relies solely on local inter-robot communication. We assume robots
have finite communication ranges and can only communicate with other robots that



(a) (b)

Fig. 2 Results of the system in Figure 7. These plots compare the steady state distributions and the
convergence rate of the system with and without ensemble feedback. Each left side plot shows the
transient behavior from an initial condition of X = [0,0,30]. The solid lines denote the numerical
solutions of the first moment dynamics and the data points are 10 representative stochastic simula-
tion runs. The right side plots are the steady state distributions represented as Gaussians. Note how
the system with ensemble feedback has faster convergence and smaller variance on its populations.

are co-located at the same site and/or within each other’s communication range. As
robots move from one site to another and exchange information with other robots
they encounter, each robot can construct their own estimates of the population levels
at the various sites.

To more faithfully represent the underlying agent-based system, we expand the
ensemble model to take into account the navigation controller executed by individ-
ual robots as they move from one task/site to another. Given the set of M tasks and
task controllers {U1, . . . ,UM}, let Ui j denote the navigation controller executed by a
robot to travel from site i to j. Let λi j denote the mean per robot arrival rates at site
j for robots traveling from sites i. In other words, 1/λi j denote the expected travel
time between sites i and j whose variability can be affected by the number of robots
“on the road”. Let Yi j(t) denote the number of robots traveling between sites i and
j. Similar to the Xi(t) variables which denote the number of robots at site i, Yi j(t)
are discrete random variables.

Applying (2) with ψ(Xi) = Xi, we obtain the following first moment dynamics

d
dt E[Xi] = ∑

∀e ji∈E
λ jiE[Yji]− ∑

∀ei j∈E
ki jE[Xi],

d
dt E[Yi j] = ki jE[Xi]−λi jE[Yi j]

(10)

for all i, j = 1, . . . ,M. Due to space considerations, we omit the equations for the
second moment dynamics. Similar to previous examples, we employ the feedback
control strategy given by (8). The moment dynamics with state feedback can be
obtained by substituting ki j = αi j−βi jX jX−1

i into the above equations.
To achieve online estimation of the on-site robot population as well as the robot

population at neighboring sites, robots exchange information with other robots that
are co-located at the same site. Robots arriving from site i from site j delivers an
estimate of X j which we denote as X̂ j|i and refer to it as the estimated value of X j



at task i. Since the proposed ensemble feedback strategy relies on information of
robot populations at adjacent sites, the decentralized implementation requires two
way reactions between sites to achieve variance control.

Algorithm 2 presents the decentralized single robot controller with ensemble
feedback. The significant change in the decentralized scheme is the updating of
transition rates in a discrete fashion that allows for the state dependent rates to be
maintained. Each robot sets its own timer by randomly sampling an exponential
distribution. This allows each robot to actively reset its timer while not effecting
the expected transition time of the robot. This is imperative because the transition
times must be updated for all changes in the current population and the population
estimates.

Algorithm 2 Robot Controller w/ Local Communication
1: Initialize Robot Controller: taskController =Ui
2: loop
3: execute taskController
4: while taskController ==U ji do
5: if q ∈ B(i) then
6: taskController =Ui
7: Send estimate {X̂ j} to other robots executing i
8: T = setExponentialTimer(α,β ,Xi, X̂ j|i)
9: end if

10: end while
11: while taskController ==Ui do
12: if ∆Xi 6= 0 then
13: X̂i = X̂i +∆Xi
14: T = setExponentialTimer(α,β ,Xi, X̂ j|i)
15: end if
16: if T == 0 then
17: {Xi}k = Xi−1
18: j = sample[ ki1

∑∀(i, j)∈E ki j
, · · · , ki j

∑∀(i, j)∈E ki j
, · · · ]

19: taskController =Ui j
20: end if
21: end while
22: end loop

4.3 In the Presence of Errors

In this work, we consider the performance of our proposed distributed ensemble
strategy in the presence of sensing and communication failures. Specifically, we
consider two types of errors: bad estimates of ensemble variables due to communi-
cation failures and sensing errors that result in localization errors leading to erro-
neous navigation strategies.



To simulate communication failures, we included a probabilistic rate at which the
robots exchange information with each other when co-located at the tasks. Recall
that robots must know the estimates of the robot populations at its current task,
X̂i, and at neighboring sites, X̂ j|i, before deciding to proceed to the next task since
ki j = αi j−β i jX̂ j|iX

−1
i . We note that in the previous section, we assume robots have

perfect information of the number of robots co-located at the same task. As such,
we did not distinguish between Xi and X̂i. Here, we consider the impact of missed
updates on Xi on the overall performance and thus denote a robot’s estimate of Xi
as X̂i. From Algorithm 2, X̂i is updated every time a robot arrives and leaves the
site, while X̂ j|i is only updated when a new robot arrives at the site. Two types of
communication errors are considered: failure to receive updates on X̂i and X̂ j|i. In
one scenario, robots probabilistically fail to receive updates on X̂i and in another,
robots probabilistically fail to receive updates on X̂ j|i.

To simulate localization errors where individual robots fail to reach the desired
task locations, “lost” robots are tasked to navigate to a “dummy” holding site that
is separate from the task locations. Every time a robot leaves a site for a new task,
it has a non-zero probability of arriving at the dummy location. These “lost” robots
are eventually stochastically reintroduced back into the system by returning to one
of the active task sites. Upon arrival, these robots will communicate an out-of-date
estimate of X̂ j or a zero value. This is to simulate localization errors that can result
in prolonged navigation times and/or localization errors that result in erroneous es-
timates of the population at another site because the robot believed it was at a given
site when it was effectively lost.

The results for the following scenarios are presented in the next section: (I) the
system with no ensemble feedback, (II) robots executing Algorithm 1, (III) robots
executing Algorithm 2, (IV) robots executing Algorithm 2 with communication er-
rors, and (V) robots executing Algorithm 2 with navigation errors.

5 Results

To verify the validity of our robot controller presented in Algorithm 2, we employed
a multi-level simulation strategy. At the top level are the macro-continuous simula-
tions where the linear moment closure equations are numerically solved. At the
intermediate level are the macro-discrete simulations which are conducted using
the Stochastic Simulation Algorithm (SSA) which is mathematically equivalent to
an agent-based simulation [9]. At the lowest level are the micro-discrete simula-
tions which are agent-based simulations using a team of mSRV-1 robots in USAR-
Sim [23].

Simulations at all three levels were run for a team of 30 robots for the four site
example shown in Figure 3. The macro-discrete simulations were ran for approxi-
mately 30,000 transitions to ensure the system has reached steady-state for the fol-
lowing Scenarios: (I) the system with no ensemble feedback, (II) robots executing
Algorithm 1, (III) robots executing Algorithm 2, (IV) robots executing Algorithm 2



with communication errors, and (V) robots executing Algorithm 2 with navigation
errors. For Scenario (IV), we consider the case where communication failures results
in incorrect estimates of the robot population at neighboring or off-site tasks only
(IVa) and incorrect estimates of the on-site robot populations only (IVb). Similarly,
for Scenario (V), we consider the case where localization/navigation errors lead to
robots passing on out-of-date information (Va) or robots passing on a population es-
timate of 0 robots at a given task (Vb). A snapshot of our USARSim micro-discrete
simulations for a 4-site surveillance task is shown in Figure 4.

Fig. 3 (a) Robot controller for the 4-task problem with navigation. Ui denotes task controllers at
site i and Ui j denotes navigation controllers between sites i and j. (b) The corresponding ensemble
model.

The macro-continuous, macro-discrete, and micro-discrete results for Scenario
(I) are shown in Figures 5-6. Since the macro-continuous and macro-discrete pop-
ulation distributions always show good correspondence in all scenarios, we only
show macro-continuous and micro-discrete (agent-base) solutions for the remaining
scenarios. These are shown in Figures 8-13 located in the Appendix. In these figures,
the macro-continuous results are represented as normal distributions and shown by
the dotted lines.

The values for αi j’s and βi j’s in the ensemble feedback strategy are shown in
Table 5 and were chosen such that E[X ] = (6,6,6,4) for each site while reducing
Var[Xi]. The values for the expected travel times are shown in Table 6. The travel
times are found by running initial experiments and solving for what the associated
road rates would have to be to achieve the associated distribution. This is then com-
pared with the actual average travel time of the robots. These tables are located in
the Appendix.

The first and second moments of our results for Scenarios (I)-(III) are summa-
rized in Table 1. Each row of data within the table corresponds to a full micro-
discrete simulation that lasted approximately 5 hours or 5000 state transitions. Ad-
ditionally, the results for Scenarios (IVa) and (IVb) are summarized in Tables 2



and 2 respectively. Finally, Table 3 summarizes the mean and variance of the robot
populations for Scenario (Va) and (Vb). Additional results showing the probability
distributions for the various scenarios are shown in the Appendix.

Fig. 4 A still of the 30 robot USAR simulation. While executing the survey task, the robots would
circle the sites. Due to the planar size of the simulation area,this still only shows tasks sites 1,2 and
3. Site 4 is relatively far removed to the upper right.

Fig. 5 Macro-continuous and macro-discrete probability distributions of the robot ensemble at
each site with no ensemble feedback, i.e., Scenario (I). Macro-continuous results obtained from
numerically solving the moment closure are plotted as a dashed line.

6 Discussion

The results shown in Figure 5-9 demonstrate the ability of our ensemble feedback
strategy to simultaneously affect the mean and the variance of the on-site robot pop-
ulations. More interestingly, our fully decentralized implementation where robots



Fig. 6 Macro-continuous and micro-discrete probability distributions of the robot ensemble at
each site with no ensemble feedback, i.e., Scenario (I). Macro-continuous results obtained from
numerically solving the moment closure are plotted as a dashed line.

Sim Type E[X1] E[X2] E[X3] E[X4] Var[X1] Var[X2] Var[X3] Var[X4]

(I) no Micro-Discrete 6.13 5.99 5.98 3.95 5.20 4.45 4.89 3.58
feedback Macro-Discrete 6.00 6.02 6.00 3.95 4.76 4.83 4.83 3.36
βi j = 0 Macro-Continuous 5.98 5.99 5.99 4.01 4.79 4.79 4.79 3.48

(II) Micro-Discrete 6.01 5.79 5.93 3.84 3.04 2.36 2.63 1.60
Algorithm 1 Macro-Discrete 5.97 5.96 5.97 4.03 2.54 2.56 2.52 1.45

Macro-Continuous 6.01 5.97 5.99 4.01 2.49 2.53 2.52 1.42
(III) Micro-Discrete 5.88 5.86 5.93 4.24 3.42 3.48 3.18 2.10

Algorithm 2 Macro-Discrete 5.96 5.96 5.97 4.11 3.03 3.06 3.03 1.82
Macro-Continuous 5.83 5.79 5.80 4.65 3.29 3.61 3.60 2.50

Table 1 Summary of the steady state means and variances for the 4-site surveillance task as shown
Figure 3 for Scenarios (I) No Ensemble Feedback (β = 0), (II)Robots executing Algorithm 1, and
(III) Robots executing Algorithm 2.

E[X1] E[X2] E[X3] E[X4] Var[X1] Var[X2] Var[X3] Var[X4]

(III) 5.88 5.86 5.93 4.24 3.42 3.48 3.18 2.10

(IVa) 6.06 6.02 5.99 4.00 3.05 3.11 2.75 2.20

(IVb) 5.72 6.03 5.80 3.98 3.20 3.74 3.33 1.90

Table 2 Summary of the steady state means and variances for the 4-site surveillance task for
Scenarios (III) Robots executing Algorithm 2 w/ no failures, (IVa) Errors in off-site X j|i estimates,
(IVb) Erros in on-site Xi estimates.

E[X1] E[X2] E[X3] E[X4] Var[X1] Var[X2] Var[X3] Var[X4] E[XL] Var[XL]

(III) 5.88 5.86 5.93 4.24 3.42 3.48 3.18 2.10 0 0

(Va) 5.26 5.32 5.33 3.99 3.21 2.87 2.89 1.99 2.63 2.56

(Vb) 5.38 5.38 5.20 4.00 3.62 3.35 3.00 2.13 2.53 3.32

Table 3 Summary of the steady state means and variances for the 4-site surveillance task for
Scenarios (III) Robots executing Algorithm 2 w/ no failures, (Va) Navigation errors leading to
out-of-date estimates, and (Vb) Navigation errors leading to estimates of 0 robots.

rely solely on at-site communication to estimate the various population variables
achieves similar performance predicted by the ensemble model (see Figure 9).



However, we note that in our example, the mean task completion rates were
slower than the travel transitions rates between sites, αi jE[Xi]− βi jE[X j] < λi jYi j.
This led to a system where the effects due to the travel delays were overshadowed
by the delays introduced by robots spending time at a site. For systems with larger
travel times and lower site transition rates, the ensemble may encounter some insta-
bility due to poor estimation of the site populations. This issue is alleviated by the
natural connection between the travel rate and the communication rate. To further
reduce these effects, we could provide the robots the ability to estimate both X j and
Yi j. This is not entirely unreasonable since estimation of Yi j could be achieved as
robots encounter other robots as they travel between sites.

While there is some disagreement between the population means and variances
predicted by the linear ensemble model and the actual robot simulations, we believe
that the main source of the model error is due to the minimum value of the single
robot transition rate. Each reaction expression has a rate of zero when either the
number of robots at the associated site is zero, or the difference αi jE[Xi]−βi jE[X j]<
0. Since all of the rates are one-way, they only govern robots leaving a site and thus
the transition rate will go to zero if αi jE[Xi]−βi jE[X j]< 0. The linear approximation
does not take into account this saturation effect.

More interestingly, Figures 10-11 show that our strategies are robust to commu-
nication failures that lead to erroneous robot population estimates. Lastly, while we
note a slight shift in the mean of the results for Scenario (V) (see Figures 12-13),
these are due to the fact that at any time an average of 10 robots are always “lost”.
However, looking at Table 3, we note that when compared to the results of Scenario
(III), differences in means and variances are small. In general, poor estimates of
the site populations would lead to tighter distributions and this is confirmed by our
data. This is because the initial estimate the robot has is Xi = 1 which maximizes
the feedback term, ∝ X−1

i , causing the transition rates to slow down with respect to
the populations at other sites, which leads to a shrinking of the variance.

When considering localization/navigation errors, we note that robots traveling on
longer paths have higher likelihoods of getting lost. This results in a lack of good
information getting through to sites that are far away which alters the behavior of
those subgroups. This makes intuitive sense since errors tend to accumulate and
as more robots get lost, there are less robots to occupy the other sites resulting in
a small drop in mean population. However, Site 4, the site further away does not
experience this drop since the effective estimates of Site 4’s robot population at
Sites 1 and vice-versa are regularly misled by robots who eventually make their
way back to these sites.

Of significant importance is that our results show that the distributed implemen-
tation of the proposed ensemble feedback strategy is in fact robust to both commu-
nication and localization errors as long as the time to communicate between robots
at site is significantly less than the time it takes the robots to finish the task and move
one to another site. From Table 2(c), we note that the average delay introduced by
the communication errors at Site 1 is about 2 seconds while the Site 1 changes pop-
ulation about every 8 seconds. In most applications, it is safe to assume that on
average communication occurs at a much faster rate than execution of the task by



the robot even when communication is lossy. As such, our results show the feasi-
bility and validity of using the ensemble dynamic models to synthesize distributed
ensemble feedback strategies.

7 Conclusion and Future Outlook

In this work, we presented a method for synthesizing distributed ensemble feedback
control strategies through the development and analysis of an appropriate macro-
scopic description of the ensemble dynamics. Moment closure techniques were used
to derive the ensemble dynamics and through this analysis a linearizing ensemble
feedback strategy was obtained. We presented a distributed implementation of the
proposed ensemble feedback strategy which can be implemented on robots with
limited communication range. The resultant agent-level control policies enabled the
team to affect both the mean and the variance of the ensemble population across
the various spatially distributed tasks. Furthermore, we showed how the agent-level
strategies are robust to communication and navigation errors as long as the aver-
age time for communicating between robots is faster than the average time a robot
spends at a task.

While the results are positive, it would be interesting to conduct a more com-
plete sensitivity analysis of the distribute ensemble strategy to the various failure
modes. From our results, we believe it is possible to select the appropriate feedback
gains to not only affect the mean and the variance of the on-site populations, but
also to improve the systems overall convergence rate. In general, that the feedback
terms, i.e., the βi j terms, look like “backward reactions” in the first moment and
does increase the convergence rate of the population means as seen in Figure 2(b).
However, simply scaling βi j up would inhibit the at task exit rates from the perspec-
tive of a single robot since ki jXi =αi jXi−βi jX j. As such, while the time to converge
would be reduced, the overall effect would be higher mean populations at the tasks
and less robots transitioning into the Yi j states. The end result is the team’s inability
to maintain the desired mean populations at the various tasks. As such, further stud-
ies is needed to better understand the relationship between the length of the travel
times and time required for individual robots to achieve a stable estimate of the var-
ious population variables and how this affects the overall convergence rate. Lastly,
it would be interesting to see the extension of these synthesis techniques to a wider
range of complex group behaviors.

Acknowledgements

This work is partially supported by the National Science Foundation under Grant
No. CNS-1143941.



References

1. S. Berman, A. M. Halasz, M. A. Hsieh, and V. Kumar. Navigation-based optimization of
stochastic strategies for allocating a robot swarm among multiple sites. In Proc. 2008 IEEE
Conf. on Decision & Control (CDC’08), pages 4376–4381, Cancun, Mexico, 2008.

2. N. Correll and A. Martinoli. Towards multi-robot inspection of industrial machinery - from
distributed coverage algorithms to experiments with miniature robotic swarms. IEEE Robotics
and Automation Magazine, 2008.

3. J. Cortes, S. Martinez, T. Karatas, and F. Bullo. Coverage control for mobile sensing net-
works. In Proc. IEEE Int. Conf. on Robotics and Automation (ICRA’02), pages 1327–1332,
Washington, DC, 2002.

4. T. S. Dahl, M. J. Mataric, and G. S. Sukhatme. A machine learning method for improving
task allocation in distributed multi-robot transportation. In D. Braha, A. Minai, and Y. Bar-
Yam, editors, Understanding Complex Systems: Science Meets Technology, pages 307–337.
Springer, Berlin, Germany, June 2006.

5. M. B. Dias, R. M. Zlot, N. K., and A. Stentz. Market-based multirobot coordination: a survey
and analysis. Proc. of the IEEE, 94(7):1257–1270, July 2006.

6. B. P. Gerkey and M. J. Mataric. Sold!: Auction methods for multi-robot control. IEEE Trans.
on Robotics & Automation, 18(5):758–768, Oct 2002.

7. B. P. Gerkey and M. J Mataric. A formal framework for the study of task allocation in multi-
robot systems. Int. J. of Robotics Research, 23(9):939–954, September 2004.

8. D. Gillespie. A general method for numerically simulating the stochastic time evolution of
coupled chemical reactions. J. of Computational Physics, 22(4):403–434, 1976.

9. D. Gillespie. Exact stochastic simulation of coupled chemical reactions. J. of Physical Chem-
istry, 81:2340–2361, 1977.

10. M. Golfarelli, D. Maio, and S. Rizzi. Multi-agent path planning based on task-swap nego-
tiation. In Proc. 16th UK Planning & Scheduling SIG Workshop, Durham, England, 1997.
PlanSIG.

11. A. Halasz, M. A. Hsieh, S. Berman, and V. Kumar. Dynamic redistribution of a swarm of
robots among multiple sites. In Proc. IEEE/RSJ Int. Conf. on Intelligent Robots and Systems
(IROS’07), pages 2320–2325, San Diego, CA, Oct.–Nov. 2007.

12. J. P. Hespanha. Moment closure for biochemical networks. In Proc. of the 3rd Int. Symp. on
Control, Communications and Signal Processing, Mar. 2008.

13. K. Hosokawa, I. Shimoyama, and H. Miura. Dynamics of self assembling systems: Analogy
with chemical kinetics. Artificial Life, 1(4):413–427, 1994.

14. M. A. Hsieh, A. H., S. Berman, and V. Kumar. Biologically inspired redistribution of a swarm
of robots among multiple sites. Swarm Intelligence, December 2008.

15. Ali Jadbabaie, J. Lin, and A.S. Morse. Coordination of groups of mobile autonomous agents
using nearest neighbor rules. IEEE Transactions on Automatic Control, June 2003.

16. E. Klavins. Proportional-integral control of stochastic gene regulatory networks. In Proc.
2010 IEEE Conf. on Decision & Control (CDC’10), 2010.

17. K. Lerman, C. Jones, A. Galstyan, and M. J. Mataric. Analysis of dynamic task allocation in
multi-robot systems. Int. J. of Robotics Research, 2006.

18. A. Martinoli, K. Easton, and W. Agassounon. Modeling of swarm robotic systems: a case
study in collaborative distributed manipulation. Int. J. of Robotics Research: Special Issue on
Experimental Robotics, 23(4-5):415–436, 2004.

19. T. W. Mather and M. A. Hsieh. Distributed robot ensemble control for deployment to multiple
sites. In 2011 Robotics: Science and Systems, Los Angeles, CA USA, Jun/Jul 2011.

20. T. W. Mather and M. A. Hsieh. Ensemble synthesis of distributed control and communica-
tion strategies. In in the Proc. IEEE Int. Conf. on Robotics and Automation (ICRA2012),
Minneapolis, MN USA, May 2012.

21. Nathan Michael, Calin Belta, and Vijay Kumar. Controlling three dimensional swarms of
robots. In IEEE Int. Conf. on Robotics & Automation (ICRA) 2006, pages 964–969, Orlando,
FL, April 2006.



22. N. Napp, S. Burden, and E. Klavins. Setpoint regulation for stochastically interacting robots.
In Robotics: Science and Systems V. MIT Press, 2009.

23. USARSim. Unified system for automation and robot simulation.
http://usarsim.sourceforge.net, 2007.

Appendix – Supplemental Data

Fig. 7 A Graphical representation of a chemical reaction network representation of an example
3-site surveillance problem where Xi denotes the number of robots at site i executing surveillance
task Ui.

(11)

Rates α12 α13 α21 α32 β12 β21 β13 β21

w/o (8) 1.66 1.97 2.41 3.94 0 0 0 0
w/ (8) 2.93 2.52 2.82 6.98 0.85 1.01 0.60 1.01

Table 4 Values of αi j’s and βi j’s for the system given by equation (11) with and without the
ensemble feedback strategy given by equation (8). These values were chosen such that E[X ] =
[10,15,5] and Var[X ] = [4,4,2] with the ensemble feedback strategy.



Fig. 8 Macro-continuous and micro-discrete probability distribution of the robot ensemble at each
task site with robots executing Algorithm 1, i.e., Scenario (II). Macro-continuous results obtained
from numerically solving the moment closure are plotted as a dashed line.

Fig. 9 Macro-continuous and micro-discrete probability distribution of the robot ensemble at each
task site with robots executing Algorithm 2, i.e., Scenario (III). Macro-continuous results obtained
from numerically solving the moment closure are plotted as a dashed line.

Fig. 10 Macro-continuous and micro-discrete probability distribution of the robot ensemble at
each task site with robots executing Algorithm 2 with communication errors leading to incorrect
off-site population estimates, i.e., Scenario (IVa). Macro-continuous results obtained from numer-
ically solving the moment closure are plotted as a dashed line.

Fig. 11 Macro-continuous and micro-discrete probability distribution of the robot ensemble at
each task site with robots executing Algorithm 2 with communication errors leading to erroneous
on-site population estimates, i.e., Scenario (IVb). Macro-continuous results obtained from numer-
ically solving the moment closure are plotted as a dashed line.

Fig. 12 Macro-continuous and micro-discrete probability distribution of the robot ensemble at
each task site with robots executing Algorithm 2 with localization/navigation errors and with
old/erroneous non-zero off-site population estimates, i.e., Scenario (Va). Macro-continuous results
obtained from numerically solving the moment closure are plotted as a dashed line.



Fig. 13 Macro-continuous and micro-discrete probability distribution of the robot ensemble at
each task site with robots executing Algorithm 2 with localization/navigation errors leading to
estimates of off-site populations set to zero, i.e., Scenario (Vb). Macro-continuous results obtained
from numerically solving the moment closure are plotted as a dashed line.

Proportional rate α12 α13 α14 α21 α23 α31 α32 α41

Rates (10−3/sec) 65.0 61.8 39.7 64.1 58.7 62.6 57.9 15.3
Feedback rate β12 β13 β14 β21 β23 β31 β32 β41

Rates (10−3/sec) 23.0 23.0 34.5 23.0 23.0 23.0 23.0 15.3

Table 5 The transition rate gains that control the wait times at the tasks. ki j = αi j−βi jX̂ j|iX̂
−1
i

Intersite Travel Times λ
−1
12 λ

−1
13 λ

−1
14 λ

−1
21 λ

−1
23 λ

−1
31 λ

−1
32 λ

−1
41

E[Ti j] (sec) 41.6 45.2 107.0 39.3 45.2 41.2 46.7 99.1

Table 6 Expected travel times, or inverse rates, λ
−1
i j , between tasks.


