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In this paper, we report on the integration challenges of the various component technolo-
gies developed toward the establishment of a framework for deploying an adaptive sys-
tem of heterogeneous robots for urban surveillance. In our integrated experiment and
demonstration, aerial robots generate maps that are used to design navigation controllers
and plan missions for the team. A team of ground robots constructs a radio-signal strength
map that is used as an aid for planning missions. Multiple robots establish a mobile ad
hoc communication network that is aware of the radio-signal strength between nodes,
and can adapt to changing conditions to maintain connectivity. Finally, the team of aerial
and ground robots is able to monitor a small village, and search for and localize human
targets by the color of the uniform, while ensuring that the information from the team is
available to a remotely located human operator. The key component technologies and
contributions include: �a� Mission specification and planning software; �b� exploration
and mapping of radio-signal strengths in an urban environment; �c� programming ab-
stractions and composition of controllers for multirobot deployment; �d� cooperative con-
trol strategies for search, identification, and localization of targets; and �e� three-
dimensional mapping in an urban setting. © 2007 Wiley Periodicals, Inc.

1. INTRODUCTION

Urban and unstructured environments provide
unique challenges for the deployment of multirobot
teams. In these environments, buildings and large ob-
stacles pose three-dimensional �3D� constraints on
visibility, communication network performance is
difficult to predict, and global positioning system
�GPS� measurements can be unreliable or even un-
available. The deployment of a network of aerial and
ground vehicles working in cooperation can often
achieve better performance since these 3D sensing
networks may be better poised to obtain higher qual-
ity and more complete information and be robust to
the challenges posed by these environments. Under
these circumstances, it is necessary to keep the net-
work tightly integrated at all times to enable the ve-
hicles to better cooperate and collaborate and achieve
greater synergy. Furthermore, one must provide en-
abling technologies to permit the deployment of
these heterogeneous teams of autonomous mobile ro-
bots by a few human operators to execute the desired
mission. This paper presents our attempts to realize
our vision of an autonomous adaptive robot network
capable of executing a wide range of tasks within an
urban environment. The work, funded by the De-
fense Advanced Research Projects Agency’s
�DARPA� MARS2020 program, was a collaborative
effort between the General Robotics, Automation,
Sensing, and Perception �GRASP� Laboratory at the
University of Pennsylvania, the Georgia Tech Mobile
Robot Laboratory, and the University of Southern
California’s �USC� Robotic Embedded Systems Labo-
ratory.

Our vision for the project was the development of
a framework that would enable a single human op-
erator to deploy a heterogenous team of autonomous
air and ground robots to cooperatively execute tasks,
such as surveillance, reconnaissance, and target
search and localization, within an urban environment
while providing high-level situational awareness for
a remote human operator. Additionally, the frame-
work would enable autonomous robots to synthesize
the desirable features and capabilities of both delib-
erative and reactive control while incorporating a ca-
pability for learning. This would also include a soft-
ware composition methodology that incorporates
both precomposed coding and learning-derived or
automated coding software to increase the ability of
autonomous robots to function in unpredictable en-
vironments. Moreover, the framework would be con-
text driven, and use multisensor processing to disam-
biguate sensor-derived environmental state
information. A team of heterogeneous robots with
these capabilities has the potential to empower the in-
dividual robotic platforms to efficiently and accu-
rately characterize the environment, and hence po-
tentially exceed the performance of human agents. In
short, our goals for the project were to develop and
demonstrate an architecture, the algorithms, and soft-
ware tools that:

• Are independent of team composition;
• Are independent of team size, i.e., number of

robots;
• Are able to execute of a wide range of tasks;
• Allow a single operator to command and

control the team; and
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• Allow for interactive interrogation and/or
reassignment of any robot by the operator at
the task or team level.

We report on the first outdoor deployment of a
team of heterogeneous aerial and ground vehicles
which brought together three institutions with over
15 different robotic assets to demonstrate communi-
cation sensitive behaviors for situational awareness
in an urban village at the McKenna Military Opera-
tions on Urban Terrain �MOUT� site in Fort Benning,
Georgia. The integrated demonstration was the cul-
mination of the MARS2020 project bringing together
the various component technologies developed as
part of the project. The demonstration featured four
distinct types of ground robots each using different
types of command and control software and operat-
ing systems at the platform level. These were coor-
dinated at the team level by a common mission plan
and operator control and display interconnected
through an ad hoc wireless network. The result was
an integrated team of unmanned aerial vehicles
�UAVs� and unmanned ground vehicles �UGVs�, in
which the team and the network had the ability to
adapt to the needs and commands of a remotely lo-
cated human operator to provide situational aware-
ness.

This paper is organized as follows: We present
some related work in networked robotic systems in
Section 2. Section 3 provides a brief description of the
experimental testbed used to evaluate the component
technologies summarized in Section 4. Section 5 de-
scribes the integrated demonstration that brought to-
gether the numerous key technologies summarized
in this paper and the integration challenges. Section
6 provides a discussion on the successes and lessons
learned with some concluding remarks.

2. RELATED WORK

There have been many successes in the manufactur-
ing industry where existing sensors, actuators, mate-
rial handling equipment, and robots have been recon-
figured and networked with new robots and sensors
via wireless networks to enhance productivity, qual-
ity, and safety. However, in most of these cases, the
networked robots operate in a structured environ-
ment with very little variation in configuration
and/or operating conditions, and tasks are often well
defined and self-contained.

The growing interest in the convergence of the ar-
eas of multiagent robotics and sensor networks has
lead to the development of networks of sensors and
robots that not only perceive their environment but
also achieve tasks, such as locomotion �Majumder,
Scheding & Durrant-Whyte, 2001�, manipulation
�Kang, Xi & Spark, 2000�, surveillance �Hsieh, Cow-
ley, Kumar & Taylor, 2006�, and search and rescue, to
name a few. Besides being able to perform tasks that
individual robots cannot perform, networked robots
also result in improved efficiency. Tasks such as
searching or mapping �Thibodeau, Fagg & Levine,
2004� can be achieved by deploying multiple robots
performing operations in parallel in a coordinated
fashion. Furthermore, networked systems enable
fault tolerance in design by having the ability to react
to information sensed by other mobile agents or re-
mote sensors. This results in the potential to provide
great synergy by bringing together components with
complementary benefits and making the whole
greater than the sum of the parts.

Some applications for networked robots include
environmental monitoring, where one can exploit
mobility and communication abilities of the robotic
infrastructure for observation and data collection at
unprecedented scales in various aspects of ecological
monitoring. Some examples include: Sukhatme et al.
�2006� for aquatic monitoring, Kaiser et al. �2005� for
terrestrial monitoring, and Amarss �2006� for subsoil
monitoring. Other applications for networked robotic
systems include surveillance of indoor environments
�Rybski et al., 2000� and support for first responders
in a search and rescue operation �Kotay, Peterson &
Rus, 2005�. In Corke, Peterson & Rus, �2003� the com-
munication capabilities of a network of stationary
sensor nodes are exploited to aid in the localization
and navigation of an autonomous aerial vehicle,
while Durrant-Whyte, Stevens & Nettleton �2001� ex-
ploited the parallel processing power of sensor net-
works for data fusion. A theoretical framework for
controlling team formation for optimal target track-
ing is provided in Spletzer & Taylor �2002�, while
Stroupe & Balch �2003� used a behavior-based ap-
proach to solve a similar problem. In Sukkarieh,
Nettleton, Grocholsky & Durrant-Whyte �2003�, co-
operative target tracking is achieved by optimizing
over all joint team actions.

While there are many successful embodiments of
networked robots with numerous applications, there
are significant challenges that have to be overcome.
The problem of coordinating multiple autonomous
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units and making them cooperate creates problems at
the intersection of communication, control, and per-
ception. Cooperation entails more than one entity
working toward a common goal, while coordination
implies a coupling between entities that is designed
to achieve the common goal. Some works that con-
sider coordination and task allocation strategies in
uncertain environments include Mataric, Sukhatme
& Ostergaard �2003�, Lerman, Jones, Galstyan & Ma-
taric �2006�, and McMillen & Veloso �2006�. A
behavior-based software architecture for heteroge-
neous multirobot cooperation is proposed in Parker
�1998, while a methodology for automatic synthesis
of coordination strategies for multirobot teams to ex-
ecute given tasks is described in Tang & Parker
�2005�. A market-based task allocation algorithm for
multirobot teams tasked to extinguish a series of fires
arising from some disaster is considered in Jones,
Diaz, & Stentz �2006b�. Dynamic coalition formation
for a team of heterogeneous robots executing tightly
coupled tasks is considered in Jones et al. �2006a�.

Our goal is to develop networks of sensors and
robots that can perceive their environment and re-
spond to it, anticipating information needs of the net-
work users, repositioning and self-organizing to best
acquire and deliver the information, thus achieving
seamless situational awareness within various types
of environments. Furthermore, we are also interested
in providing proper interfaces to enable a single hu-
man user to deploy networks of unmanned aerial,
ground, surface, and underwater vehicles. There
have been several recent demonstrations of multiro-
bot systems exploring urban environments
�Chaimowicz et al., 2005; Grocholsky, Swaminathan,
Keller, Kumar & Pappas, 2005� and interiors of build-
ings �Howard, Parker & Sukhatme, 2006; Fox et al.,
2006� to detect and track intruders, and transmit all of
the above information to a remote operator. Although
these examples show that it is possible to deploy net-
worked robots using an off-the-shelf 802.11b wireless
network and have the team be remotely tasked and
monitored by a single operator, they do not quite
match the level of team heterogeneity and complexity
described in this paper.

3. EXPERIMENTAL TESTBED

Our multirobot team consists of two unmanned aerial
vehicles �UAVs� and eight unmanned ground ve-
hicles �UGVs�. In this section, we provide a short de-

scription of the various components of the experi-
mental testbed used to evaluate the key technologies
employed in the integrated experiment.

3.1. UAVs

The two UAVs are quarter-scale Piper Cub J3 model
airplanes with a wing span of 104 in. ��2.7 m� �see
Figure 1�a��. The glow fuel engine has a power rat-
ing of 3.5 HP, resulting in a maximum cruise speed
of 60 knots ��30 m/s�, at altitudes up to 5000 feet
��1500 m�, and a flight duration of 15–20 min. Each
UAV is equipped with a sensor pod containing a
high resolution firewire camera, inertial sensors, and
a 10 Hz GPS receiver �see Figure 1�b��, and is con-
trolled by a highly integrated user-customizable Pic-
colo avionics board which is manufactured by
CloudCap Technologies �Vaglienti & Hoag, 2003�.
The autopilot provides innerloop attitude and veloc-
ity stabilization control allowing research to focus on
guidance at the mission level.

Additionally, each UAV continuously communi-
cates with the ground station at 1 Hz and the range
of the communication can reach up to 6 miles. Direct
communication between UAVs can be emulated
through the ground or by using the local communi-
cation channel on the UAVs �802.11b-wireless net-

Figure 1. �a� Two Piper J3 cub model airplanes. �b� UAV
external payloads �POD�.
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work card�. The ground station has an operator in-
terface program �shown in Figure 2�, which allows
the operator to monitor flight progress, obtain telem-
etry data, or dynamically change the flight plans us-
ing georeferenced maps. The ground station can
concurrently monitor up to ten UAVs, and performs
differential GPS corrections and updates the flight
plan, which is a sequence of 3D waypoints con-
nected by straight lines.

3.2. UGVs

Our team of UGVs consists of three ClodBusters,
two Pioneer2 ATs, one Segway RMP, two ATRV-Jrs,
and an AM General Hummer Vehicle modified and
augmented with multiple command and control
computers and deployed as a Base Station. The
ClodBuster UGVs are commercial four-wheel drive
model trucks modified and augmented with a Pen-
tium III laptop computer, a specially designed uni-
versal serial bus device which controls drive motors,
odometry, steering servos, and a camera pan mount
with input from the personal computer, GPS re-
ceiver, inertial measurement unit �IMU�, and
firewire stereo camera. The Pioneer2 AT is a typical
four-wheeled statically stable robot designed for
outdoor uses. This skid-steer platform can rotate in
place and achieve a maximum speed of 0.7 m/s. The
Segway RMP is a two-wheeled dynamically stable
robot with self-balancing capability. Both the Pio-
neer2 AT and the Segway are equipped with a GPS
receiver, an IMU, built-in odometry, a horizontal

scanning laser sensor, and a pan/tilt/zoom-capable
camera. The Segway is also equipped with an addi-
tional vertical scanning laser to enable 3D mapping.

The ATRV-Jr is a four-wheeled robot that can
navigate outdoor terrains reaching approximately
2 m/s at its full speed. It is equipped with onboard
dual processor Pentium III computers, a differential
GPS, a compass, an IMU, and shaft encoders. In ad-
dition, two sets of laser range finders are mounted
on top of the robot in order to provide full 360° cov-
erage for obstacle detection. The Hummer Vehicle is
outfitted with seating for three human operators and
command and control computers for UGV deploy-
ment, launch missions, and monitor the progress of
the ongoing missions. Figure 3 shows our team of
UGVs.

3.3. Software

Three software platforms were used to task and con-
trol our team of UAVs and UGVs: MissionLab,
ROCI, and PLAYER/STAGE.

MISSIONLAB �MissionLab, 2006� is a suite of
software tools for developing and testing behaviors
for a single or team of robots. The user interacts
through a design interface tool that permits the vi-
sualization of a specification as it is created. Indi-
vidual icons correspond to behavioral task specifica-
tions, which can be created as needed or preferably
reused from an existing repertoire available in the
behavioral library. Multiple levels of abstraction are

Figure 2. Ground Station Operator Interface showing
flight plan and actual UAV position �August 2003, Fort
Benning, Georgia�.

Figure 3. Our team of UGVs.
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available, which can be targeted to the abilities of the
designer, ranging from whole robot teams, down to
the configuration description language for a particu-
lar behavior within a single robot, with the higher
levels being those easiest to use by the average user.
After the behavioral configuration is specified, the
architecture and robot types are selected and compi-
lation occurs, generating the robot executables.
These can be run within the simulation environment
provided by MISSIONLAB itself for verification of
user intent, such as Endo, MacKenzie & Arkin �2004�
and MacKenzie & Arkin �1998�, or through a soft-
ware switch that can be downloaded to the actual
robots for execution.

ROCI �Chaimowicz, Cowley, Sabella & Taylor,
2003; Cowley, Hsu & Taylor, 2004a� is a software
platform for programming, tasking, and monitoring
distributed teams of robots. ROCI applications are
composed from self-describing components that al-
low for message-passing-based parallelism that al-
lows for the creation of robust distributed software.
ROCI is especially suited for programming and
monitoring distributed ensembles of robots and sen-
sors since modules can be transparently launched
and connected across a network using mechanisms
that provide automated data formatting, verifica-
tion, logging, discovery, and optimized transfer.

PLAYER is a device server that provides a flex-
ible interface to a variety of sensors and actuators
�e.g., robots�. PLAYER is language and platform in-
dependent allowing robot control programs to ex-
ecute on any computer with network connectivity to
the robot. In addition, PLAYER supports multiple
concurrent client connections to devices, creating
new possibilities for distributed and collaborative
sensing and control. STAGE is a scaleable multiple
robot simulator; it simulates a population of mobile
robots moving in and sensing a two-dimensional en-
vironment, controlled through PLAYER.

3.4. Communication

Every agent on the network is equipped with a small
embedded computer with 802.11b wireless Ethernet
called the junction box �JBox�. Communication
throughout the team and across the different soft-
ware platforms was achieved via the wireless net-
work. The JBox, developed jointly by the Space and
Naval Warfare Systems Center, BBN Technologies,
and the GRASP Lab, handles multihop routing in an
ad hoc wireless network and provides the full link

state information enabling network connectivity
awareness to every agent on the network.

4. COMPONENT TECHNOLOGIES

We present the component technologies developed
toward the goal of providing an integrated frame-
work for the command and control of an adaptive
system of heterogeneous robots. These technologies
were developed as a set of tools that can allow a hu-
man user to deploy a robot network to search and lo-
cate information in a physical world, analogous to the
use of computer networks via a search engine to look
for and locate archived multimedia files. Of course,
the analogy only goes so far. Unlike the World Wide
Web, looking for a human target does not reduce to
searching multimedia files that might contain seman-
tic information about human targets. Robots must
search the urban environment while keeping connec-
tivity with a base station. They must be able to detect
and identify the human target. And, they must be
able to alert the human operator by presenting infor-
mation ordered in terms of salience, through a wire-
less network, allowing the human operator to request
detailed information as necessary. Ideally, while all
this is happening, the processes of reconfiguring—
routing information through a multihop network—
and moving to maintain connectivity must be evident
to the human user. In this section, we provide a brief
summary of the enabling technologies developed to
bring us closer to our vision. We refer the interested
reader to the relevant literature for more detailed dis-
cussions.

4.1. Mission Specification and Execution

A pressing problem for robotics, in general, is how
to provide an easy-to-use method for programming
teams of robots, making these systems more acces-
sible to the average user. The MISSIONLAB mission
specification system �MissionLab, 2006� has been de-
veloped to address such an issue.

An agent-oriented philosophy �MacKenzie, Ar-
kin & Cameron, 1997� is used as the underlying
methodology, permitting the recursive formulation
of entire societies of robots. A society is viewed as an
agent consisting of a collection of either homoge-
neous or heterogeneous robots. Each individual ro-
botic agent consists of assemblages of behaviors, co-
ordinated in various ways. Temporal sequencing
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affords transitions between various behavioral states
that are naturally represented as a finite state accep-
tor. Coordination of parallel behaviors can be accom-
plished via fusion, action selection, priority, or other
means as necessary. These individual behavioral as-
semblages consist of groups of primitive perceptual
and motor behaviors, which ultimately are
grounded in the physical sensors and actuators of a
robot. An important feature of MISSIONLAB is the
ability to delay binding to a particular behavioral
architecture �e.g., schema-based �Arkin, 1998�� until
after the desired mission behavior has been speci-
fied. Binding to a particular physical robot also oc-
curs after specification, permitting the design to be
both architecture and robot independent. This char-
acteristic allowed the incorporation of the ROCI and
PLAYER/STAGE systems.

To achieve the level of coordination required in
an integrated mission involving a team of heteroge-
neous robots controlled by three different mobile
software platforms �MISSIONLAB, ROCI, and
PLAYER/STAGE�, the Command Description Lan-
guage interpreter �CMDLi� was developed. The CM-
DLi is a common software library that is compiled
into each of the software target platforms. It parses
and executes a common text file �a CMDL script�
that contains the integrated mission plan developed
in MISSIONLAB by the operator �see Figure 4�a��.
Hence, the script has to be distributed among all the
participating robots prior to execution. The CMDL
script is organized into two parts: �1� The back-
ground information and �2� a list of behavioral tasks
to be executed sequentially. For example, the CMDL
script used during the integrated experiment is
shown in Figure 4�b�. The background information
includes the names of the robot executables and the
information regarding memberships of predefined
groups. At runtime, the CMDLi interpreter resident
on each platform sequentially executes the list of
specified behaviors, and sends corresponding com-
mands to the underlying controller program �i.e.,
PLAYER in PLAYER/STAGE, etc.�.

Tasks/behaviors supported by CMDLi include
MoveTo, Loiter, TrackTarget, and Synchronize. In
MoveTo, the robot drives and steers itself toward the
target position; whereas in Loiter, the robot stops and
stands by at the target position. When the robot is
executing the TrackTarget behavior, the robot identi-
fies and follows a target object. In Synchronize, the
robot waits for other specified robots to reach the
same synchronization state. To realize this synchro-

nization, each robot broadcasts its behavioral status
to others via the JBox. When synchronization is at-
tained, the robot resumes execution of the remaining
mission.

The available tasks for CMDLi can be easily ex-
panded to a more general list. Each of the three soft-
ware platforms already supports various behavior
repertoires. �For example, the robot controlled by
MISSIONLAB can execute more than 80 types of be-
haviors �MissionLab, 2006.�� To add a new task to
this CMDLi framework, a new binding between the
new task name and the platform’s behavior simply
needs to be defined. It is important to note that in-
creasing the size of the task list does not significantly
affect computational complexity or performance, as
sequencing of the tasks is previously defined by a
human operator rather than an automatic planning
algorithm. Of course, if the new task involves a com-
putationally very expensive algorithm �e.g., solving
a traveling salesman problem�, the performance
should be solely affected by the execution of the task
itself �i.e., the size of the list does not matter�.

The status of the robot can also be monitored by
the MISSIONLAB console along with the overall
progress of the mission. More specifically, the dis-
play consists of a mission area map showing the
real-time GPS coordinates of the robots as well as a
CMDLi interface that can dynamically display the
progress of an integrated mission. A screen capture
of the MISSIONLAB console showing progress dur-
ing the integrated experiment is depicted in Figure
5. In this particular example, at the North cache,
ClodBuster 1 �controlled by ROCI and denoted by
upenn�1� waits for ATRV-Jr 1 �controlled by MIS-
SIONLAB and denoted as gtechRobot1� to complete
the MoveTo �GIT-A1� behavior, so that synchroniza-
tion can be achieved. In the South cache, two Clod-
Busters �denoted by upenn�2 and upeen�3�: A Pio-
neer2 AT and a Segway �controlled by PLAYER and
denoted by usc�pioneer1 and usc�segway, respec-
tively�, all wait for the second ATRV-Jr �denoted by
gtechRobot2� to arrive at their cache. Lastly, at any
given point, the operator is given the option to inter-
rupt or even abort the current mission via the
CMDLi interface at the MISSIONLAB console.

4.2. Communication Network and Control for
Communication

Successful deployment of multirobot tasks for sur-
veillance and search and rescue relies in large part
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Figure 4. �a� Coordination of heterogeneous mobile robot software platforms through the CMDLi. �b� CMDL script used
during the MARS 2020 integrated experiment.
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on a reliable communication network. In general, ra-
dio propagation characteristics are difficult to pre-
dict a priori since they depend upon a variety of
factors �Neskovic, Neskovic & M13 Paunovic, 2000�
which makes it difficult to design multiagent sys-
tems such that the individual agents operate within
a reliable communication range at all times. In this
section, we consider the problem of acquiring infor-
mation for radio connectivity maps in urban terrains
that can be used to plan multirobot tasks and also
serve as useful perceptual information.

A radio connectivity map is a function that re-
turns the signal strength between any two positions
in the environment. In general, it is extremely diffi-
cult to obtain a connectivity map for all pairs of po-
sitions in the desired workspace, thus one aims to
construct a map for pairs of locations selected a pri-
ori. For small teams of robots, the construction of the
radio connectivity map can be formulated as a graph
exploration problem. Starting with an overhead sur-
veillance picture, it is possible to automatically gen-
erate roadmaps for motion planning and encode

these roadmaps as roadmap graphs.1 From these
roadmap graphs, a radiomap graph is obtained by
determining the set of desired signal strength mea-
surements �between pairs of positions� one would
like to obtain. The discretization of the workspace
allows us to strategically place each robot in a
k-robot team in k separate locations on the roadmap
graph to obtain the desired measurements encoded
in the radiomap graph. A sample roadmap graph
and its corresponding radiomap graph are shown in
Figure 6. The solid edges in Figure 6�a� denote fea-
sible paths between pairs of positions denoted by
the circles. The dashed edges in Figure 6�b� denote
signal strength measurements between pairs of posi-
tions that must be obtained. Figure 6�c� show three
possible placements of a team of three robots such
that the team can obtain at least one of the measure-
ments given by the radiomap graph. An exploration
strategy then consists of a set of waypoints that each

1In the event that an overhead surveillance picture is not avail-
able, one can generate roadmaps for motion planning with a map
of the region of interest.

Figure 5. Screen capture of the MISSIONLAB console showing the progress of the integrated mission. The locations of
the robots with respect to the MOUT site map are displayed on the left-hand side. The progress of the mission with
respect to the CMDLi script is shown on the right-hand side.

Hsieh et al.: Adaptive teams of autonomous robots for situational awareness • 999

Journal of Field Robotics DOI 10.1002/rob



robot must traverse to obtain all the desired signal
strength measurements encoded in the radiomap
graph.

Experiments were performed using three of our
ground vehicles to obtain radio connectivity data at
the Fort Benning MOUT site. In these experiments,
an optimal exploration strategy was determined us-
ing the algorithm described by Hsieh, Kumar & Tay-
lor �2004�. Each robot was individually tasked with
the corresponding list of waypoints. Team members
navigate to their designated waypoints and synchro-
nize, every member of the team measures its signal
strength to the rest of the team. Once the robots have
completed the radio-signal strength measurements,

they synchronize before moving on to their next tar-
geted location. This is repeated until every member
has traversed through all the waypoints on their list.
The waypoints are selected to minimize the prob-
ability of losing connectivity under line-of-sight con-
ditions in the planning phase to ensure the success
of the synchronization based on line-of-sight propa-
gation characteristics that can be determined a pri-
ori. Figure 7 shows the radio connectivity map that
was obtained for the MOUT site. The weights on the
edges denote the average signal strength that was
measured between the two locations. In these ex-
periments, the signal strength was measured using
the JBox, described in Section 3.

Figure 6. �a� A roadmap graph. The solid edges denote feasible paths between neighboring cells associated with each
node. �b� A radiomap graph for �a�. The dashed edges denote links for which signal strength information must be
obtained. �c� Three sample configurations of three robots on the roadmap graph that can measure at least one of the edges
in the radiomap graph. The solid vertices denote the locations of the robots.

Figure 7. �a� Overhead image of the MOUT site. �b� Experimental radio connectivity map for the MOUT site obtained
using our multirobot testbed.
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Radio connectivity maps can therefore be used
to plan multirobot tasks to increase the probability
of a reliable communication network during the ex-
ecution phase. Ideally, the measurements obtained
during the exploration phase can be used to con-
struct a limited model for radio propagation in the
given environment such that, when coupled with
additional reactive behaviors �Hsieh et al., 2006�, a
reliable communication network can be maintained
during deployment. This two-prong approach en-
sures that communication constraints are always sat-
isfied and allows the operator to redeploy the team
and/or deploy additional assets in the presence of
dynamic changes in the environment.

4.3. Programming Abstractions and Composition
for Multirobot Deployment

The software development process in robotics has
been changing in recent years. Instead of developing
monolithic programs for specific robots, engineers
are using smaller software components to construct
new complex applications. Component-based devel-
opment offers several advantages such as reuse of
code, and increased robustness, modularity, and
maintainability. To this end, we have been develop-
ing ROCI, a software platform for programming,
tasking, and monitoring distributed teams of robots
�Cowley et al., 2004a�. In ROCI, applications are
built in a bottom-up fashion from basic components
called ROCI modules. A module encapsulates a pro-
cess which acts on data available on its inputs and
presents its results as outputs. Modules are self-
contained and reusable, thus complex tasks can be
built by connecting the inputs and outputs of spe-
cific modules. We say that these modules create the
language of the ROCI network, allowing task de-
signers to abstract away low level details in order to
focus on high level application semantics �Cowley,
Hsu & Taylor, 2004b�.

One key characteristic of a component-based
system is the development of robust interfaces to
connect individual modules. In component-based
development, external interfaces should be clearly
defined to allow an incremental and error resistant
construction of complex applications from simpler
self-contained parts. By making interfaces explicit
and relying on strongly typed self-describing data
structures, ROCI allows the development of robust
applications. Moreover, ROCI’s modularity supports

the creation of parallel data flows which favors the
development of efficient distributed applications.

The composition of complex behaviors in a
component-based system may be achieved through
the use of a more declarative application specifica-
tion that defines application components, param-
eters of those components, and the connections be-
tween components, as opposed to the more
traditional imperative programming style with the
components which themselves may be developed.
This delineates a separation between the specifica-
tion of what an application does from how it does it.
This division is enabled by the syntactic and seman-
tic interface specifications associated with individual
components, which may be generated automatically
using type introspection or manually by the devel-
opers. The system should be designed everywhere
to require minimal extra effort from the developer to
support the notion of the actual distributed compo-
sitional execution model.

The emphasis on interfaces further steers com-
ponent development toward a natural implementa-
tion of message-passing parallelism, once again with
minimal impact on the component developer. In-
deed, the many pitfalls common to parallel process-
ing should not be of primary concern to the devel-
opers of many types of modules whose behavior
ought to be conceptually atomic. Instead, the appli-
cation architect, working with the vocabulary de-
fined by the component developers, may construct
parallel data flows implicitly through the creation of
a module network, the nature of which is of no in-
trinsic interest to the component developer.

4.4. Distributed Databases for Situational
Awareness

A data logging system has been built on top of the
foundation described in the previous section as real-
ized by the ROCI software platform. Due to the fact
that component interfaces are defined in terms of the
data types they transact, operations on component
outputs may be automatically dispatched to an ap-
propriate handler via traditional single dispatch. In
this case, we developed a generic logging system
that could maintain a store of data indexed by time.
While the types of data relevant to a mobile robot
deployment are varied, time is a universally mean-
ingful index due to the sequential manner in which
data are collected. This basic indexing can be aug-
mented by additional mechanisms that handle more
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specific data types; for example, indexing position
measurements by location. These loggers operate in-
dependently of the components that generate the
data, thus freeing the component developer from
concerns regarding serialization, indexing, or query
resolution. This functional separation is a hallmark
of componentized development and is responsible
for the extensibility of the system as a whole.

With these flexible data logging components in
hand, an application over the robot network may be
decorated with logs on any intercomponent connec-
tion. These logs are then discoverable not just as ge-
neric data logs, but as data logs specific to the type
of data to which they are attached. This is made pos-
sible by the self-describing nature of intercomponent
connections based on the underlying type system.
Having such logs attached to arbitrary data sources
frees the development team from having to foresee
every useful combination of sensor data. Instead, ag-
gregate data types are created ondemand by cross
indexing separate data stores, perhaps across mul-
tiple machines. In this way, smart compound data
types are created from data streams that are anno-
tated only with the metadata necessary to describe
their own type; there is no unnecessary coupling im-
posed on the software architecture at any level.

The logging system itself was inspired by the
observation that the sensor and processor band-
width onboard many mobile robots far outstrips
available bandwidth. Due to this imbalance, it is of-
ten beneficial to optimize query resolution over the
distribution of data sources by distributing query
logic to the data before performing a join over the
results of that initial filtering step. In the ROCI sys-
tem, it is easy to programmatically launch a compo-
nent, or collection of components, on another ma-
chine and attach inputs and outputs to dynamically
discovered data sources. The code of the component
will be automatically downloaded by the node host-
ing the relevant data in question via a peer-to-peer
search and download mechanism that is transparent
to the node launching the component and the node
that is to execute the component or collection of
components. This allows for the creation of active
queries that ship their logic to the data and return
only resulting data sets to the originator of the
query. In most usages, the result data set is signifi-
cantly smaller than the data set taken as a whole.

An example of this functionality is the determi-
nation of from where a particular target was sighted.
The query is a joining of a position table with an

image table over the shared time index where the
images contain a particular target. In our experimen-
tal setup, accurate position information was often
logged by a camera system mounted on rooftops
overlooking the arena of operations, while the mo-
bile robot logged many hundreds of megabytes of
image data. The query, in this case, was executed by
shipping a target identification component, param-
eterized to look for a specified target, to the node
that maintained the image log. The time indexes for
images containing the target were used to index into
the position log maintained by the node tracking the
mobile units. Finally, the positions from which mo-
bile units identified the target were sent to the query
originator. Note that transferring the image data set
over the network would be impractical; even trans-
ferring the position data set, which was generated
from high-frequency sampling, would have been
prohibitively expensive. Instead, resources were
used commensurate with their availability.

4.5. Cooperative Search, Identification, and
Localization

In this section, we describe the framework used to
exploit the synergy between UAVs and UGVs to en-
able cooperative search, identification, and localiza-
tion of targets. In general, UAVs are adept at cover-
ing large areas searching for targets. However,
sensors on UAVs are typically limited in their accu-
racy of localization of targets on the ground. On the
other hand, UGVs are suitable for accurately locat-
ing ground targets but they do not have the ability
to move rapidly and see through such obstacles as
buildings or fences. Using the Active Sensor Net-
work architecture proposed in Makarenko, Brooks,
Williams, Durrant-Whyte & Grocholsky �2004�, we
build upon the key idea that the value of a sensing
action is marked by its associated reduction in un-
certainty and that mutual information �Cover &
Thomas, 1991� formally captures the utility of sens-
ing actions in these terms. This allows us to incorpo-
rate the dependence of the utility on the robot and
sensor state and actions and allows us to formulate
the tasks of coverage, search, and localization as op-
timal control problems. Our algorithms for search
and localization are easily scalable to large numbers
of UAVs and UGVs and transparent to the specificity
of the individual platforms.

In this framework, the detection and estimation
problems are formulated in terms of summation and

1002 • Journal of Field Robotics—2007

Journal of Field Robotics DOI 10.1002/rob



propagation of formal information measures. We use
certainty grids �Makarenko, Williams & Durrant-
Whyte, 2003� as the representation for the search and
coverage problems. The certainty grid is a discrete-
state binary random field in which each element en-
codes the probability of the corresponding grid cell
being in a particular state. For the feature detection
problem, the state x of the ith cell Ci can have one of
two values, target, and no target. This coverage al-
gorithm allows us to identify cells that have an ac-
ceptably high probability of containing features or
targets of interest.

The localization of features or targets problem is
first posed as a linearized Gaussian estimation prob-
lem where the information form of the Kalman filter
is used �Grocholsky, Makarenko, Kaupp & Durrant-
Whyte, 2003�. In this manner, one can show the in-
fluence of sensing processes on estimate uncertainty
�Grocholsky et al., 2005�, where the control objective
is to reduce estimate uncertainty. Because this uncer-
tainty directly depends on the system state and ac-
tion, each vehicle chooses an action that results in a
maximum increase in utility or the best reduction in
the uncertainty. New actions lead to an accumula-
tion of information and a change in the overall util-
ity. Thus, local controllers are implemented on each
robotic sensor platform that direct the vehicle and
sensors according to the mutual information gradi-
ent with respect to the system state. This gradient
controller allows individual vehicles to drive in di-
rections that maximize their information gain locally.
The additive structure of the update equations for
the information filter lends itself to decentralization.
Thus measurements from different robots �UAVs
and UGVs� are propagated through the network and
updated through propagation of internodal informa-
tion differences, and decisions based on this updated
information are made independently by each robot
�Grocholsky, Keller, Kumar & Pappas, 2006�. A com-
munications manager known as a channel filter
implements this process at each internodal connec-
tion �Grocholsky, 2002�.

The network of aerial and ground sensor plat-
forms can then be deployed to search for targets and
for localization. Both the search and localization al-
gorithms are driven by information-based utility
measures and as such are independent of the source
of the information, the specificity of the sensor ob-
taining the information, and the number of nodes
that are engaged in these actions. Most importantly,
these nodes automatically reconfigure themselves in

this task. They are proactive in their ability to plan
trajectories to yield maximum information instead of
simply reacting to observations. Thus, we are able to
realize a proactive sensing network with decentral-
ized controllers, allowing each node to be seamlessly
aware of the information accumulated by the entire
team. Local controllers deploy resources accounting
for and, in turn, influencing this collective informa-
tion which results in coordinated sensing trajectories
that evidently benefit from complementary sub-
system characteristics. Information aggregation and
source abstraction results in nodal storage, process-
ing, and communication requirements that are inde-
pendent of the number of network nodes. The ap-
proach scales to large sensor platform teams.

4.6. 3D Mapping

Many different methods can be used to represent
outdoor environments. A point cloud �Wolf, Howard
& Sukhatme, 2005� is one of the most frequently
used techniques. It can describe features in fine de-
tail when a sufficient number of points is used.
These maps can be generated fairly easily when
good pose estimation and range information are
available.

In order to smooth pose estimation, we devel-
oped a particle filter-based GPS approximation algo-
rithm �Wolf et al., 2005�. Each particle represents a
possibility of the robot being at a determinate posi-
tion, and the particles are propagated as the robot
moves. The motion model for the particles is based
on the odometer and IMU sensors data. A small
amount of Gaussian noise is also added to compen-
sate for a possible drift in the robot’s motion. The
observation model is based on the GPS information.
The particles are weighted based on how distant
they are from the GPS points. The closer a particle is
from the GPS point, the higher it is weighted. After
being weighted, the particles are resampled. The
chance of a particle being selected for resampling is
proportional to its weight; high weighted particles
are replicated and low weighted particles are elimi-
nated. The complete path of each particle is kept in
the memory, and at the end only particles that rea-
sonably followed the GPS points will be alive. Con-
sequently, the path of any of these particles can be
used as a reasonable trajectory estimation for the ro-
bot. The closer a particle is to the GPS point, the
higher its probability for being selected. In order to
obtain accurate local pose estimation, a scan match-
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ing algorithm is applied afterward. Scan matching
consists of computing the relative motion of the ro-
bot by maximizing the overlap of consecutive range
scans. Features, such as trees, long grass, and mov-
ing entities, make scan matching a hard task in an
outdoor environment. Figure 8 shows GPS data,
odometry, and the particle filter-based GPS approxi-
mation for the robot’s trajectory.

Once the current robot pose is obtained �from
the localization module� and a desired target
location/trajectory is specified, a Vector Field
Histogram+ �VFH+� �Ulrich & Borenstein, 1998� al-
gorithm is used for point-to-point navigation. VFH+
algorithm provides a natural way to combine a local
occupancy grid map and the potential field method,
and the dynamics and kinematics of a mobile robot
can be integrated to generate an executable path.

In addition, the robot’s motion property �e.g.,
goal oriented, energy efficient, or smooth path� can
be controlled by changing the parameters of a cost
function. Once the robot arrives at the desired way-
point, the point-to-point navigation module notifies
the achievement to CMDLi, and CMDLi proceeds to
the next waypoint. Figure 9 shows two trajectories
that the robot generated while performing point-to-
point navigation using two different waypoint sets.

Thus, when constructing 3D maps based on the
robot’s position, the environment representation is
built directly by plotting range measurements into

the 3D Cartesian space. Figure 10 shows the result of
mapping experiments performed at the Fort. Ben-
ning MOUT site. The maps were plotted using a
standard Virtual Reality Modeling Language
�VRML� tool, which allows us to virtually navigate
on the map. It is possible to virtually go on streets
and get very close to features, such as cars and traf-
fic signs, and it is also possible to view the entire
map from the top.

5. INTEGRATED DEMONSTRATION

In this section, we describe the final experiment
which demonstrated the integration of all the compo-
nent technologies with a discussion of integration
challenges that had to be overcome. In order to test
and demonstrate the integration of the component
technologies, we conceived an urban surveillance
mission which involved the detection of a human tar-
get wearing a uniform with a specified color within a
designated area, and then tracking the target once the
identity of the target has been confirmed by a re-
motely located human operator. We briefly describe
the mission in the next section that was used to stage
a demonstration before discussing the results.

5.1. Demonstration Setup

To meet our project goals, an integrated demonstra-
tion based on an urban surveillance mission by a

Figure 8. Localization on the MOUT site. Figure 9. Point-to-point navigation using two way-point
sets.
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heterogeneous team of robots was conceived. The
goal of the demonstration was for the team to ascer-
tain if a human target with a particular uniform was
within the surveillance region. The demonstration
was conducted on December 1, 2004, at the Fort Ben-
ning MOUT site, which spans approximately 90 m
North to South and 120 m East to West. We de-
ployed one UAV, three ClodBusters, two Pioneer2
ATs, two ATRV-Jrs, and one Segway. Three human
operators, responsible for monitoring the progress of
the demonstration and target verification, were
seated in the Hummer Vehicle which was used as
the base station �Base�.

The experiment consisted of an aerial phase,
where a UAV was tasked to conduct an initial coarse
search of the surveillance region and determine po-
tential target locations. This was then followed by a
second phase, where UGVs, based on the UAV’s ini-
tial assessment, were tasked to conduct a more local-
ized search and identification of the targets. Since
the goal was surveillance rather than target recogni-
tion, targets in the aerial phase of the experiment
consisted of bright orange color blobs and the target
in the ground phase was a human in an orange col-
ored vest. The orange color was simply used to en-
sure positive autonomous recognition without hav-
ing to resort to complex and/or expensive means of
target acquisition and designation. The human op-
erator was brought into the loop on certain synchro-
nization points. While deployment decisions �i.e.,
passing synchronization points� dedicated to main-
taining network connectivity were made automati-

cally, the human operator was engaged by the robots
to confirm the identity of the target to ensure that
the robots had indeed acquired the correct target be-
fore proceeding.

A single UAV was initially deployed to actively
search and localize specified targets within the des-
ignated region. Targets were located at various loca-
tions on the site. Once a target�s� was detected, an
alert was sent from the UAV to the Base Station to
trigger the deployment of the UGVs. Figure 11
shows some targets detected by the UAV during one
of these fly-by experiments.

Figure 10. Top and side view of the 3D map of the Fort Benning site.

Figure 11. Targets localized by the UAV on the MOUT
site encircled by a white square.
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In our demonstration, we assumed a scenario
where a UAV observed a human target entering the
surveillance area from the north of the MOUT site
which triggered an alert message at the base station.
Once the Base had been notified, two groups of ro-
bots were dispatched from the Base to caching areas
at the limits of radio network connectivity to await
further instructions, marked as Cache N and Cache
S in Figure 12. A ClodBuster was positioned at
Cache N, while two ClodBusters, two Pioneer2 ATs,
and a Segway were positioned at Cache S. The two
ATRV-Jrs remained at the Base. For the ground
phase of the experiment, the initial target sighting
was selected a priori based on previous UAV experi-
ments, and thus the trigger was delivered manually.

The human target then entered into the building,
shown in Figure 12, unseen by the team. At this
point, a surveillance mission was composed from
the Base to search the town for the target of interest.
The mission plan was initially given to two ATRV-Jrs
which were then deployed, one to each cache area.
Upon arrival, the mission plan was then transferred
to the individual platforms; in this case, already po-
sitioned at the two caches, via the wireless network.
The two ATRV-Jrs then acted as radio network re-
peaters to allow the others to venture beyond the
limit of one-hop network communication. Following
a universal commence signal from the Hummer base
station, the robots then autonomously deployed
themselves to search for the target of interest. Once

the ClodBuster robots had arrived at their target po-
sitions, they entered a scanning mode, and passed
images of the candidate target to the operator. These
positions were chosen during the mission planning
phase based on the radio connectivity map of the
MOUT site obtained during an initial mapping and
exploration phase shown in Figure 7. A schematic of
the deployment scheme and all the robot trajectories
are shown in Figure 13�a�. Network connectivity was
maintained to ensure that once the target was lo-
cated, an alert would be sent to the base station, per-
mitting the operator to make a positive identification
by viewing images obtained by the robotic agents.
Figure 14�a� shows the actual alert that was seen by
the human operator when the target was located by
one of the ClodBusters. Figure 14�b� shows the im-
age that was used by the human operator to make
the positive identification. The individual robots au-
tonomously selected the best image, i.e., images in
which the target was centrally located, from their
databases to forward to the Base when it was re-
quested.

Once detected, the target was then tracked via
the cameras from some of the robots, while the Seg-
way moved in to physically track it as it left the area.
This commitment to a particular target was finalized
by the human, while the target tracking was
achieved using a particle filter-based algorithm de-
veloped to enable tracking in real time �Jung &
Sukhatme, 2004�. Figure 15 shows some snapshots of

Figure 12. Robot initial positions and position of the Base.
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Figure 14. �a� Screen capture of base station console showing the alert message notifying the human operator that a
target has been located. �b� Image obtained by one of the ClodBusters and provided to the human operator for
identification.

Figure 15. Snapshots of previous target tracking result.

Figure 13. �a� Schematic of robot trajectories. �b� Schematic of target trajectory and Segway trajectory as it tracks and
follows the target.
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previous target tracking results. The information col-
lected by the Segway was then transmitted to the
base station over the multihop network. Figure 16 is
a snapshot of the monitoring station. The current po-
sitions of the robots were displayed on the site map
on the left in real time. The two windows on the
right showed live video streams from the Segway
�on the top� and one of the Pioneer2 AT �on the bot-
tom� for surveillance activity. Detected targets were
displayed on top of the video streams.

The experiment concluded as the target of inter-
est departed the bounds of the MOUT site, while the
Segway tracked it movements. This experiment was
carried out live and the deployment was fully au-
tonomous with the experiment lasting approxi-
mately 30 min. A short movie of the integrated ex-
periment has been included with this publication.

5.2. Challenges Toward Integration

5.2.1. Mission Specification and Execution

Specification and execution of a mission through
MISSIONLAB was found to be fairly robust. As the
simulator in MISSIONLAB allows the mission sce-
nario to be tested without actual deployment of the
robots, a solid CMDL script for the Fort Benning
MOUT site �100% success rate in simulation� was
composed before being integrated with other com-
ponents. Even when the mission was executed by all
of the actual robots and integrated with all other
components, the CMDLi was found to be consider-
ably reliable. Every robot was able to carry out all of

the assigned tasks, and the synchronization was
properly attained as specified in the script. No major
problem was found during the execution of the mis-
sion.

Improvements can be made to the mission speci-
fication process to enhance robustness to errors dur-
ing execution. For example, during the demonstra-
tion, the Segway collided with one of the ClodBuster
because of errors in localization �caused by poor
GPS information� and because the Segway sensors
for obstacle avoidance were not low enough to de-
tect the smaller ClodBusters. This could have been
prevented by explicitly modeling the heterogeneity
of the robots and adding additional constraints on
the waypoints of the individual robots.

5.2.2. Communication Network and Control for
Communication

A team of three ClodBuster robots were used to col-
lect the radio-signal strength map shown in Figure 7.
The map was obtained prior to the final demonstra-
tion. Robots were simultaneously tasked to continu-
ously log signal strength and position information at
specified location during the entire experiment. The
continuous logs proved to be extremely useful in the
construction of the map shown in Figure 7 since GPS
errors of more than 5 m meters were fairly common,
especially toward the bottom right region of the site
where robots consistently had problems obtaining
accurate position information.

This experience suggests that it may be possible
to obtain a finer resolution map if one can incorpo-
rate some learning into the exploration strategy. Ad-
ditionally, while the map proved to be very useful
for determining the deployment positions of the
Clobuster robots in the final demonstration, it failed
to provide much insight for the deployment posi-
tions of the other robots due to the differences in
robot sizes and capabilities. Thus, future work in-
cludes the development of exploration strategies for
teams of heterogeneous robots to enable better utili-
zation of the various available resources. Lastly,
since the robots were not required to operate at the
limit of their communication links for the integrated
demonstration, the radio connectivity map proved
to be a useful resource. In situations where robots
would be operating at these limits, one must incor-
porate reactive strategies to enable robots to adapt to
changes in their signal strengths, as shown in Hsieh
et al. �2006�.

Figure 16. Screenshot of USC monitoring station.
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5.2.3. Programming Abstractions and Composition
for Multirobot Deployment

A benefit of componentized development is that it
leads to a natural structuring of test activities. All
components are extensively tested in isolation to en-
sure that they yield the proper results given some set
of inputs. Unfortunately, the outputs of many com-
ponents are not amenable to a binary classification
of success or failure, and the input domains of many
components are too large to provide total test cover-
age. A good example of the difficulty in component
testing is a component designed to recognize a tar-
get object in images coming from a camera. Lighting
conditions, distance to the target, and environmental
features all have dramatic effects on the ability of the
software to perform correctly. For this reason, such
components were tested until they sometimes satis-
fied loosely defined performance specifications. In
the MARS experiments, image components pro-
vided tuning parameters that let engineers adjust
performance to match experimental operating condi-
tions. Such tuning—used to account for lighting con-
ditions in color-based segmentation and ground
clutter in obstacle avoidance—presents a critical
point of failure for the entire experiment. This weak-
ness may be mitigated by self-tuning software that
monitors its own performance when possible, and
by tools designed to allow human operators to
quickly calibrate the software when automated test-
ing metrics are difficult to specify.

Isolation testing also presented a difficulty early
in the development schedule when it was discov-
ered that some components were designed with
built-in performance assumptions. Such assump-
tions are only revealed when the component is
tested in various execution environments, many of
which may be difficult to anticipate without experi-
mental experience. The simplest class of problems
were those related to processing latency. Certain
controllers were built with hard-coded real-time pro-
cessing assumptions that could be satisfied by the
host �nonreal-time� operating system under minimal
central processing unit load, but were violated when
run alongside the many components that must coex-
ist for the robot to be able to express all desired be-
haviors. Some of these controllers may be designed
to dynamically tune parameters based on observed
performance characteristics, while others may be
moved to dedicated microcontrollers closer to the
hardware.

An approach that makes it easy to have asyn-
chronous interoperation between multiple proces-
sors, some of which may be offering real-time per-
formance guarantees, offers the engineering team
the ability to avoid a potentially painful compro-
mise, while also improving the scalability of the sys-
tem as a whole.

5.2.4. Distributed Databases for Situational
Awareness

The distributed database for the interactive situ-
ational awareness provision was successful on its
own, but highly dependent on general robot perfor-
mance. While the software could correctly task ro-
bots, and integrate disparate data stores into a cohe-
sive view, there was little oversight of robot
resources. This meant that a database query, such as
a request for an image taken from a particular loca-
tion, could fail due to the robot being unable to
achieve its task due to a loss of GPS reception, a
failure of the obstacle avoidance system, a mechani-
cal failure, or a networking failure. All of these fail-
ure modes were observed, but there was no auto-
mated contingency management to handle such
failures from a high level. A significant difficulty in
designing such contingency plans is that each of
these failure modes itself represents a possible out-
come of myriad actual circumstances. An obvious
strategy would be to attach a timeout to each query,
and to send another robot if the first failed.

Unfortunately, this strategy tended to result in
either a robot pileup at some environmental feature
that the robots were not capable of handling, or
great inefficiency when the first robot was able to
successfully recover and complete its mission. Ide-
ally, such inefficiencies should be acceptable operat-
ing losses of a multirobot system, and multiple robot
losses could be an acceptable price for learning valu-
able information about the environment �i.e., do not
send robots to this location�, but our experimental
setup was constrained by too small a population of
robots to accept such eventualities.

5.2.5. Cooperative Search, Identification, and
Localization

In the demonstration, the synergy between aerial
and ground vehicles was exploited to detect, iden-
tify, and localize targets on the ground. Aerial ve-
hicles are capable of searching quickly over a large
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area, but they are unable to obtain accurate estimates
of locations of potential targets because of errors in
localization �position and orientation�. On the other
hand, ground vehicles are slower but capable of
close-range observations that can confirm the iden-
tity of the target and provide better position infor-
mation. This synergy was exploited during the dem-
onstration. Overflight of the UAV �only one was
flown for the demonstration� narrowed down the
search area for the mission, while the ground robots
were able to pursue potential targets for better infor-
mation.

The integration of different communication net-
works and the distances involved proved to be chal-
lenging. The communication between the UAV and
the base station involved a low bandwidth radio
modem connection precluding the possibility of pro-
cessing of data on the ground. Thus, onboard image
processing algorithms on an off-the-shelf laptop
were necessary. The communication between the
base station and the robots would have required
multiple repeaters because of the distances between
the base station and the robot. Instead of pursuing
this solution, we manually connected the UAV net-
work and the UGV network allowing effective ex-
perimentation.

A second challenge with cooperative behaviors
with multiple sensors is the need to have an efficient
data structure coding the information in the network
that can be shared globally. While in principle this
approach allows the scaling up to large numbers of
anonymous vehicles; in practice, the communica-
tions manager needs to be aware of the identities of
each vehicle to ensure that there are no loops in the
sensor fusion network. This is a research problem
that is currently under investigation by several
groups �see, for example Dellaert, Kipp & Krau-
thausen �2005��.

5.2.6. 3D Mapping

During our experiments in Fort Benning, the robot
mapped an area of approximately 50 m�90 m
�350 m tour with an average speed of 1.2 m/s�. A
GPS unit �with an accuracy of approximately 2 m�
was used as reference for the robot’s pose estima-
tion. The pose estimation error can be noticed in the
walls of some buildings, which appear bent in the
point cloud map. Unfortunately, ground truth was
not provided during these experiments, but visual
comparisons between the aerial image and the pla-

nar model suggest errors around 2 m, which is com-
patible with the GPS errors. A better reference for
pose estimation would certainly lead our algorithm
to generate more accurate models of the environ-
ment.

The performance can be further improved by ex-
tracting planar information from the incomplete
point clouds. In our initial results, we represented
flat surfaces found on point cloud map by planes
�Wolf Howard & Sukhatme, 2005�. These planes do
not possess the same level of detail as compared to
the point clouds but they are more efficient in terms
of memory. In situations were the application does
not require a fine level of detail in the urban maps,
planar information may be a convenient alternative.

In the future, we plan to investigate different
methods for mapping urban environments and rep-
resent these maps efficiently even for large environ-
ments and high level of details. We are considering
strategies for combining range information with im-
ages. Lastly, we are also considering the combination
of range information provided by both ground ro-
bots and helicopters.

5.3. Analysis of Integrated Demonstration

Reliability and repeatability are most easily appreci-
ated when viewed from a high level. One emphasis
of the design of this demonstration was the impor-
tance of generality in the handling of robot re-
sources. That is, the team was heterogeneous in
makeup, and human operators should only be con-
cerned with relevant data. The question of what ro-
bot provided what service should never come up,
thus freeing human operators to focus on mission-
specific goals, and offering welcome flexibility to en-
gineering teams in terms of what robots are fielded
for a given mission. This abstraction of hardware re-
sources allows for a great level of scalability and
fault tolerance.

During hardware warmup at the start of the
public iteration of the integrated demonstration, the
GPS unit on one of the ClodBusters failed. The prob-
lem was quickly detected during the routine hard-
ware startup check �the importance of this activity
having long been established over months of test-
ing�, but the device could not be made to respond.
Given that there was no time to debug the issue, a
quick solution was needed. In this case, the fastest
fix was to pull the computer from the faulty robot,
and plug it into a spare robotic platform that carried
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similar hardware. The swap worked smoothly, and
no changes needed to be made to any other robot.
Calibration settings for the camera and motors were
adjusted to reflect the new hardware platform, but
all high level scripting remained unchanged. In this
case, the abstraction of hardware resources to the
scripting systems used to drive the demonstration
provided great flexibility in terms of specific hard-
ware provisioning.

The execution of the demonstration itself pro-
vided an example of the dangers of team heteroge-
neity, and the benefits of a loosely coupled robot
team with built-in redundancy. The mission was
specified such that three ClodBusters would be in
position to view the person of interest as she left the
building. Two robots had relatively close views of
the two street-facing sides of the building, while a
third robot had a slightly longer view that also en-
compassed a third side of the building. Once these
robots were in position, the Segway was to begin
patrolling an area adjacent to the building believed
to house the target. This all proceeded according to
plan, but, unnoticed by any observer, the third Clod-
Buster stopped slightly short of where it was in-
tended to be positioned. Its location was within nor-
mal localization thresholds, but just barely.
Meanwhile, the Segway patrol also strayed toward
the boundary of its expected area of coverage, which
led to a run-in between the two robots, as previously
mentioned. It was expected that the ClodBuster
�GRASP� robots could have to contend with poten-
tial collisions among themselves, which they nar-
rowly avoided during the demo, but such a collision
could be prevented due to the robots detecting each
other as unnavigable obstacles. The Segway, how-
ever, being a much larger robot, had its obstacle
avoidance thresholds set such that an obstacle the
size of a ClodBuster was considered to be surmount-
able. In this case, the Segway did surmount the
GRASP robot soon after it sent its first long distance
view of the target back to the Base. The GRASP ro-
bot was fairly seriously damaged, and began a spon-
taneous retreat back to its initial waypoint close to
the Base. Fortunately, this third ClodBuster was not
critical to mission success, and the remaining two
GRASP vehicles were able to continue capturing im-
ages of the target to be selectively pushed to the hu-
man operator.

The multiple views were sufficient for the hu-
man operator to positively identify the target, and
allow the mission to proceed with the Segway track-

ing the target as she left the mission area. Had the
mission hinged on a single ground vehicle to detect
the target leaving a building in an urban setting, it
would have been far more likely that positioning er-
ror or unwanted robot interaction �i.e., a collision�
could have led to mission failure without an outright
failure of any single component of the system.

6. CONCLUSION

Our vision for the demonstration was to advance the
state-of-the-art in the integration of heterogeneous
robots into a single team with minimal human inter-
vention. This required the presentation of a single in-
tegrated command and control interface for the hu-
man operator that enabled him/her to task the team
and monitor performance of the mission. This proved
to be very challenging since the team consisted of di-
verse robotic assets from different universities, each
running different operating systems and robot con-
trol architectures, and all quite different in physical
size and capabilities.

Our final multirobot coordination framework
had to be both flexible and responsive for our team to
be able to execute tasks efficiently and robustly. In our
integrated demonstration at the McKenna MOUT
site, the task was to patrol a small village, and report
and track a human target. The approach taken was to
augment each robotic asset’s controller with an in-
stance of a distributed tasking software agent. For
each robot, this agent negotiated work assignments
with the other assets’ agents and with the operator
console to support assigning tasks across the assets.
Each tasking agent instance maintained a work queue
for its robot and passed commands and waypoints to
the underlying controller for execution. It also aggre-
gated status reported by the underlying controller
and sent status reports back to the controller and to
the other robots. This architecture allowed the opera-
tor to create a single mission for the team, distribute
the mission to the robotic team members over the
wireless network, and monitor, modify, or replace the
mission during execution. In this fashion, the com-
mander was able to deploy the mission across the
team using the operator console and monitor
progress of the mission and the location of vehicles on
a map display during the demonstration. When a
threat was identified, the operator was presented
with video of the potential target for confirmation.

Although the initial task assignment was central-

Hsieh et al.: Adaptive teams of autonomous robots for situational awareness • 1011

Journal of Field Robotics DOI 10.1002/rob



ized, control of the individual robotic assets was ac-
complished in a decentralized fashion so as to avoid
the difficult task of seamless integration of all three
command and control softwares. This strategy al-
lowed team members to respond to dynamic changes
in the environment, as well as achieve full fault tol-
erance. Two of our robotic assets suffered cata-
strophic failures during mission deployment,2 how-
ever due to our decentralized architecture at the
individual robot level, the team was still able to locate
and track the target and complete the mission.

This experiment successfully demonstrated that
diverse robots and robot control architectures could
be reliably aggregated into a team with a single uni-
form operator control station. It showed that dispar-
ate robots could perform tightly coordinated tasks,
such as distributed surveillance and coordinated
movements. Further, all of these capabilities were
added as a software agent sitting on top of each ro-
bot’s existing controller, without invasive modifica-
tions to the existing architecture or software.

Field testing is expensive, tiring, and frustrating,
but irreplaceable in moving the competency of the
system forward. In the field, sensors and perceptual
algorithms are pushed to their limits where vegeta-
tion, lighting, and terrain are uncontrollable, and
communication radios struggle in cluttered areas
with many nodes competing for bandwidth. Just en-
suring that each robot’s batteries were charged at the
same time to allow running an integrated experiment
was difficult with this large collection of robots. Much
of the success of the integrated demonstration was
due to the extensive testing of the individual subcom-
ponents at each university and on the MOUT site.

Additionally, even with extensive field-testing, it
is often difficult to guarantee system performance at
execution time. Despite months of testing, GPS cov-
erage was spotty at best during the final days leading
up to the integrated experiment. To mitigate the lo-
calization problems, we placed stationary overhead
camera nodes on key buildings on the MOUT site.
These can be seen as the deployment of additional
UAVs,—capable of estimating their own positions as
well as accurately track ground vehicles,—to provide
localization support. Without this additional support,
the integrated experiment would have failed due to
localization problems. Success was dependent on our
ability to anticipate and prepare for such failures. As

always, integration requires substantial planning and
effort to be successful. This project, involving three
universities and two corporations, benefited from
strong leadership and collaboration to ensure that in-
tegration received the required emphasis and com-
mitment from all involved.

Finally, the most important lesson was that bring-
ing together the different groups into a single team
was extremely beneficial and the whole was truly
greater than the sum of the parts. Each team has
unique capabilities that other teams could leverage to
make rapid progress. Further, each style of robot has
unique physical capabilities and sensors that were
utilized to fill gaps and provide a solid collection of
capabilities for the integrated team.
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