
Toward Efficient Navigation in Uncertain
Gyre-Like Flows

International Journal of Robotics

Research

000(00):1–13

©The Author(s) 2010

Reprints and permission:

sagepub.co.uk/journalsPermissions.nav

DOI:doi number

http://mms.sagepub.com

Christoffer R. Heckman∗ and Ira B. Schwartz
Nonlinear Systems Dynamics Section, Plasma Physics Division, Code 6792, U.S. Naval Research
Laboratory, Washington, DC 20375, USA

M. Ani Hsieh†

SAS Laboratory, Mechanical Engineering & Mechanics Department, Drexel University, Philadelphia,
PA 19104, USA

Abstract
We present the development and experimental validation of an autonomous surface/underwater vehicle (ASV/AUV) control
strategy that leverages the environmental dynamics and uncertainty to navigate in a stochastic fluidic environment. We
assume the workspace is composed of the union of a collection of disjoint regions, each bounded by Lagrangian coherent
structures (LCS). LCS are dynamical features in the flow field that behave like invariant manifolds in general time-invariant
dynamical systems and delineate the boundaries of attraction basins. We analyze a passive particle’s noise-induced transition
between adjacent LCS-bounded regions and show how most probable escape trajectories with respect to the transition
probability between adjacent LCS-bounded regions can be determined. Additionally, we show how the likelihood of
transition can be controlled through minimal actuation. The result is an energy efficient navigation strategy that leverages
the inherent dynamics of the surrounding flow field for mobile sensors operating in a noisy fluidic environment. We
experimentally validate the proposed vehicle control strategy and analyze its theoretical properties. Our results show that
the single vehicle control parameter exhibits a predictable exponential scaling with respect to the escape times and is
effective even in situations where the structure of the flow is not fully known and control effort is costly.
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1. Introduction

To better understand various physical, chemical, and biological processes in the ocean, researchers are employing
autonomous underwater and surface vehicles (AUVs and ASVs) to monitor ocean salinity and temperature profiles (Lynch
et al., 2008; Wu and Zhang, 2011; Sydney and Paley, 2011), the dynamics of algae blooms (Zhang et al., 2007; Chen et al.,
2008; Caron et al., 2008; Das et al., 2012), and the dispersion of hazardous contaminants. However, working in geophysical
fluid environments like the ocean presents significant challenges. Underwater communication is severely limited which
means AUVs not only have to actuate control in the high inertia environment, they must also operate with minimal or no
human supervision. And since the ocean spans large physical scales, is stochastic, and has time-varying dynamics (Trulsen,
2006; Ochi, 1998), accounting for the dynamics of the surrounding fluidic environment is extremely challenging. As such,
sensors operating in these time-dependent and stochastic environments will tend to escape from their monitoring regions
of interest which limits the amount of useful data that can be collected.

More recently, researchers have shown that AUV/ASV motion planning and adaptive sampling strategies can be
improved by incorporating either historical ocean flow data (Smith et al., 2010a,b, 2012) or multi-layer partial differential
equation (PDE) models of the ocean (Wang et al., 2009; Lolla et al., 2012). However, accessibility to and the overall quality
of the flow data and/or numerical models is highly dependent on how well a given region of interest is instrumented. This
is because numerical PDE models are often derived through a combination of theoretical and field observations. Current
ocean current hindcasts, nowcasts, and forecasts provided by Naval Coastal Ocean Model (NCOM) databases (SCRIPPS,
2014) and regional ocean model systems (ROMS) (Smith et al., 2010b) are assimilated from satellite and field observations
in conjunction with predictions from numerical PDE models (Shchepetkin and McWilliams, 1998, 2005). Furthermore,
despite the U.S. Navy’s and various public and private organizations’ efforts in the last thirty to forty years to deploy a
combination of stationary, surface, and at-depth sampling technologies, existing data sets that describe geophysical flows
are still mostly finite-time and of low spatio-temporal resolution. While researchers have developed various analytical and
numerical models of geophysical flows that exhibit specific dynamical features, these models are often scale invariant. As
such, any attempts to incorporate historical and/or forecasted ocean flow data into existing AUV/ASV motion planning
and control strategies becomes an extremely challenging endeavor.

In the last two decades, Lagrangian pictures of geophysical flows have led to new dynamical systems tools, including
the study of transport by coherent structures Provenzale (1999). These studies have shown that these ubiquitous structures
play a key role in transport and give insight into the dynamics of the fluidic environment. More interestingly, minimum
energy paths in the ocean for AUVs/ASVs can coincide with a specific class of coherent structures called Lagrangian
coherent structures (LCS) (Inanc et al., 2005; Senatore and Ross, 2008). Topologically, LCS are extensions of stable and
unstable manifolds to general time-dependent flows and divide the flow into dynamically distinct regions (Haller and Yuan,
2000). For two-dimensional (2D) flows, LCS are analogous to ridges defined by local instability, and can be quantified by
Finite-Time Lyapunov Exponents (FTLE) which provide a local measure of how fast a region in the flow field is expanding
(Shadden et al., 2005). Since these structures are robust features along which organized and persistent flows exist for
a relatively long time (D’Asaro et al., 2011; D’Asaro and et al, 1996), it makes sense that minimum energy or energy
optimal paths for AUVs/ASVs would tend to trace or follow the LCS boundaries. Coupled with recent work showing the
relative robustness of strong and coherent LCS to uncertainty (Lermusiaux and Lekien, 2005; Lermusiaux et al., 2006;
Lermusiaux, 2006), these results suggest that LCS have the potential to provide a reduced-order representation of the
surrounding geophysical fluid dynamics. Based on these insights, we hypothesize that it is possible to achieve significant
improvements by incorporating LCS information into AUV/ASV motion planning and control strategies at a significantly
reduced computational burden when compared to existing strategies that rely on PDE ocean model, NCOM, and/or ROMs
data.

In this work, we consider the development of ASV/AUV control strategies that leverages the environmental dynamics
and uncertainty to navigate in a stochastic fluidic environment. We build on our previous work in collaborative tracking of
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LCS using teams of autonomous robots (Hsieh et al., May; Michini et al., 2014) and distributed allocation of autonomous
sensing resources in complex flows (Mallory et al., 2013b), and consider the synthesis of energy efficient actuation strategies
for mobile sensors operating in a collection of disjoint LCS bounded regions. We draw upon ideas presented in (Inanc
et al., 2005; Senatore and Ross, 2008; Schwartz et al., 2011, 2010) on energy optimal paths in the ocean and optimal paths
in stochastic systems to show how it is possible to increase/reduce uncertainty near the LCS boundaries through controls.
The present work focuses on the synthesis of energy efficient control strategies as opposed to energy optimal strategies
for autonomous mobile sensors operating in complex flow fields. This distinction is important since the computation of
energy optimal strategies can be expensive, especially for resource constrained vehicles. As such, we focus on suboptimal
strategies that can be implemented through simple actuation strategies. The result is an energy efficient control strategy
that enables resource constrained mobile sensors to actively change the likelihood of their escape, or break out, from their
monitoring regions and prolonging their operational lifespan.

Recently, new mathematical methods have been developed to elucidate and harness the effects of noise on dynamical
switching behavior (Forgoston et al., 2011; Bollt et al., 2002; Billings and Schwartz, 2008; Froyland and Padberg, 2009;
Billings et al., 2008). These methods accurately predict the expected switching time of particles between distinct basins
of attraction. Moreover, the techniques predict the most probable (or optimal) escape path from a region resulting from a
large fluctuation due to the underlying noise. Building on these techniques, we identify and analyze the most likely routes
of transport between two adjacent LCS-bounded regions for passive vehicles, i.e., vehicles under the influence of the fluid
flow alone and with negligible inertia. We analyze the escape times via these most likely routes of transport and show that
they correspond to fuel efficient paths since the environmental dynamics and noise is leveraged for navigation. From these
results, we design a simple control strategy and show how it can effectively manipulate a vehicle’s escape times from an
LCS-bounded region and achieve comparable or improved fuel efficiency. The result is a control effort strategy that can be
implemented with limited knowledge of the flow field to allow a vehicle to navigate from one basin of attraction to another
by leveraging the surrounding environmental dynamics.

The paper is organized as follows: We formulate the problem and outline key assumptions in Section 2. The identification
and analysis of the most likely paths for escape and the development of our control strategy is presented in Section
3. We briefly describe our experimental methodology in Section 4 and present our experimental results in Section 5.
These experimental results demonstrate that the theory we have developed for particles applies to macroscopic systems of
autonomous vehicles operating in noisy environments. This has implications for the design of controllers in environments
where the structure of the flow is not necessarily known, significant stochastic fluctuations are present, and control effort is
costly. We conclude with a discussion of our results and experimental insights in Section 6 and directions for future work
in Section 7.

2. Problem Statement

We consider the deployment of a planar autonomous underwater or surface vehicle (AUV or ASV) within a two-dimensional
(2D) obstacle free fluidic environment. We are interested in the deployment of mobile sensors with minimal actuation
capabilities for environmental monitoring and sampling applications. The objective is the synthesize control strategies
that will allow the vehicle to leverage the surrounding fluid dynamics to maneuver within the workspace. We assume the
following 2D stochastic differential equation representing a kinematic model with multiplicative noise for the AUV:

q̇qq(t) = uuu(t)+FFF(qqq(t))+GGG(qqq(t))ηηη(t), (1)

where qqq = (x,y) denotes the vehicle’s state, uuu denotes the control input, FFF(qqq) = [F1(qqq),F2(qqq)]T is a 2D planar vector field
that describes the surrounding fluid dynamics, and ηηη is a zero-mean δ -correlated white noise term with standard deviation
σ =
√

2D for a given noise intensity D. Here GGG(qqq(t)) represents a multiplicative noise array that accounts for spatial effects.
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In this work GGG(qqq)ηηη represents the inherent noise in the environment but can also reflect a vehicle’s measurement and/or
actuation uncertainty and any vehicle and/or flow field model uncertainties. For simplicity of exposition, we will assume
GGG(qqq(t)) = III, where III is the identity matrix. That is, we will consider the additive noise case in this paper.

Let W denote the connected obstacle-free workspace. In this work, we assume W =∪M
i=1Gi where Gi denotes a convex

Lagrangian coherent structure (LCS) bounded region. In 2D flows, LCS are one-dimensional (1D) boundaries that exhibit
maximum Finite-Time Lyapunov Exponents (FTLE) measures (Shadden et al., 2005; Haller, 2011). Figure 1 shows an
example 2D flow field and its corresponding FTLE field. In the time-independent case, LCS correspond to stable and
unstable manifolds of saddle points in the system where the manifolds can also be characterized by maximum FTLE
ridges1. A tessellation of the workspace along LCS, or boundaries characterized by maximum FTLE ridges, makes sense
since LCS: 1) delineate dynamically distinct regions in a 2D flow field, and 2) consequently have been shown to correspond
to regions in the flow field where more escape events occur (Forgoston et al., 2011). Therefore, by definition a passive
particle’s escape from Gi, or switching between two adjacent Gi’s is influenced both by measurement uncertainty in the
flow field as well as external noise.

(a) (b)

Fig. 1. Phase portrait (a) and corresponding FTLE field (b) of the model given by Eq. (4) with A = 1, µ = 0, and s = 1. At each of the
corners of the regions there exist saddle equilibria, and in the centers of the regions are weakly attracting equilibria.

The objective is to synthesize a control strategy that enables a AUV or robot to navigate between physically adjacent
Gi’s by leveraging the surrounding fluid dynamics and the inherent environmental noise to minimize the vehicle’s control
effort. Specifically, we are interested in control strategies that can be implemented on mobile sensors with minimal actuation
capabilities. In this work, we assume the vehicle has the ability to localize within W and the ability to measure the flow
velocity at its current position, i.e., FFF(qqq) at qqq. Additionally, we assume the tessellation of W into the individual Gi is
given and the boundary locations of each Gi are known. As such, based on the LCS-bounded cell decomposition of W , let
G = (V ,E ) define an directed graph with vertex set V = {V1, . . . ,VM} such that every Vi represents a corresponding Gi.
An edge ei j between Vi and Vj exists in the set E if the cells Gi, G j are adjacent, i.e., share a common LCS boundary, and
escapes from Vi to Vj are possible.

3. Methodology

Given an AUV with kinematics described by Eq. (1), to better understand the impact of the surrounding environmental
dynamics on the vehicle’s ability to transition from one LCS bounded region to another, we first summarize the analysis of
a vehicle’s escape trajectories in the absence of controls from an LCS bounded region. The analysis will then motivate the
proposed vehicle controller. The use of Eq. (1) as a model for AUV kinematics is justified when the flow is strong enough
to consider the inertial term of the vehicle negligible. While the theory is general enough to handle vehicle inertial effects

1The FTLE are computed based on a backward (attracting structures) or forward (repelling structures) integration in time.
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and non-Gaussian noise sources, we limit the following discussion to negligible vehicle inertia and Gaussian noise for the
sake of simplicity.

3.1. Most Probable Escape Paths in Uncertain Flows

Under the influence of noise, the dynamical behavior of the system is determined by its stationary probability density. In
particular, all equilibria are now peaks or troughs in a probability landscape describing where a particle is likely to be
located. Although there exist many paths that transport a particle from one LCS bounded region to another, in the presence
of small noise in the sense of (Feynman and Hibbs, 1965) there are “most likely transition paths” in the sense that they will
lie along a local peak in the probability density. The fact that there exist most likely transition paths is not new, and in fact
is a frequently-used result in statistical mechanics. However, our application of the idea to formally predicting such events
from a controls perspective is unique. We characterize this path to transition from one LCS bounded region to another by
considering the most likely paths between the two states. We briefly summarize the analysis for the sake of completeness
and refer the interested reader to (Heckman et al., 2014) for the specific details.

The probability of escape from an attractor under the influence of small white noise in the sense of Schuss and Spivak
(1998) scales exponentially (Feynman and Hibbs, 1965) as the action

Pηηη(qqq)� exp(−R(qqq))/D, (2)

where R represents the dynamical quantity known as the action. If we continue the thinking of (Feynman and Hibbs,
1965) and assume the noise is white, then for any realization of noise we get the action defined in (Freidlin and Wentzell,
1984) for Gaussian noise. We take a general Hamiltonian approach which also may be extended to escape induced by any
non-Gaussian noise (Schwartz et al., 2009).

We characterize the paths that require the minimum action to cause the transition. It is important to note, that the term
“action” here is taken in the mechanics sense. It is a dynamical quantity motivated by the Hamilton-Jacobi equations which,
when stationary, results in Hamilton’s equations of motion. Following this formulation, the background flow field FFF(qqq) in
Eq. (1) now becomes a constraint. The action functional for the noise is given by (Dykman, 1990):

R[qqq,ηηη ,λλλ ] =
1
2

∫
ηηη(t) ·ηηη(t)dt +

∫
λλλ (t) · (q̇qq(t)−uuu(t)−FFF(qqq(t))−ηηη(t))dt, (3)

where λλλ (t) is the time dependent Lagrange multiplier, and is the conjugate variable to the particle’s path qqq(t). We first
assume the control is turned off; i.e. uuu ≡ 000. The action in Eq. (3) results in a scalar when evaluated, and the bounds of
the integral are over the times at the end points of the trajectory qqq(t). When evaluating the action in Eq. (3), we compute
R = minR[qqq,ηηη ,λλλ ], where the minimum is taken over the functions [qqq,ηηη ,λλλ ]. Following the procedure for determining the
equations of motion using Hamilton’s principle, we set the first variation of the functional in Eq. (3) to zero. This yields
a system of differential equations that identify which solutions extremize the action in terms of the path and the noise
function necessary to realize the path. The solution in qqq is the most probable path. The resulting ηηη is the “optimal” noise
function that would realize such a transition. The function λλλ has is well-known in the optimal control theory for systems
without noise, in particular in linear quadratic optimal control problems where it determines the optimal controller.

It is important to note that there exist many paths which may cause escape. When examining the final trajectory of
those path realizations that escape a gyre, there is a well-defined maximum of a probability density that is global in phase
space. The theory presented here explains this global structure, and the above variational procedure is analogous to the
deterministic optimal trajectory generation problem where Eq. (3) is the objective function with ηηη(t) as a control input.
However, the fundamental difference in this work is that the problem is one of minimizing the exponent of a functional
probability distribution of paths, which is fully stochastic. The end result yields a path and a noise function that determine
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A E
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G1 G2

Fig. 2. Arrangement of the two-gyre system with diagram of boundary points for the integral in Eq. (3). PAB and PAC represent the
probabilities of observing a realization of noise ηηη(t) that brings a particle from A to B or C respectively. A and E represent weakly
attracting foci, and B,C are boundary saddles. These probabilities may be calculated using knowledge of the vector field, noise statistics,
and the theory of large fluctuations.

the most probable paths going from one part of phase space to another. It is important to note that this is not the minimum
noise path, rather it is the most likely path in the presence of small noise.

In this work, we model the external flow field FFF(qqq) using the wind-driven double gyre flow model which is often used
to describe large scale recirculation in the ocean (Veronis, 1966) and is given by:

F1 =−πAsin(πx)cos(πy/s)−µx≡ f1−µx,

F2 = πAcos(πx)sin(πy/s)−µy≡ f2−µy, (4)

where fi represent the conservative part of the vector field. The parameter µ is a damping coefficient, s is a scaling dimension
for the gyres, and A corresponds to the strength of the gyre flow. Figure 1(a) shows the phase portrait of Eq. (4) and Figure
1(b) shows the corresponding FTLE ridges. In this model, the workspace consists of a grid of gyres where each gyre defines
an LCS-bounded region. As shown in Figure 1(a), flows in adjacent gyres circulate in opposite directions. Each gyre has an
attractor located in the center of Gi and, since the system is time-invariant, the boundaries of each Gi consist of the stable
and unstable manifolds of the saddle points located at the four corners of each Gi.

To fix ideas of the general theory, we consider the example of a gyre-driven flow with dynamics given by Eq. (4) in a
1×2 arrangement of Gi as in Figure 2. In the small noise limit, most likely paths connect the center of Gi to its boundary
saddles. In considering the transition from G1→G2 there are two “most likely paths” that can lead to such a transition; the
first leads a particle from A→ B and the second from A→C. To “transition” is to leave a neighborhood of the center of one
region Gi and transit to the neighborhood of the center of another region G j. The time to approach the stable equilibrium
E is negligible once in its basin of attraction, and the return path is exponentially small in probability. In the case of the
A→ B path, upon arriving at B the particle has an equal chance of either transitioning to G2 or returning to G1 due to the
occurrence of a random event at the boundary saddle, where the deterministic drift is weak; the same is true for the A→C

path. Therefore, to transition from G1→G2, the probability is P12 =
PAB

2 + PAC
2 . Since these paths are equally likely, we set

PAB = PAC = α and P12 = α . This is the probability of witnessing one of the two most likely paths that direct a particle out
of G1 and may be calculated using Eq. (2).

The mean switching time is the average amount of time necessary before a transition occurs; in this case, it is:

TS = bexp
(

R
D

)
︸ ︷︷ ︸

A→(B or C)

(5)
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where b is a prefactor determined through numerical simulation or experiment. In order to calculate the switching time
in Eq. (5), we must find the most probable trajectory and noise in the sense of Eq. (3) to induce a transition. Computing
the variational derivatives of the action and setting them to zero in the case of Eq. (4) results in the following differential
equations:

ẋ = F1(x,y)+λ1 (6)

ẏ = F2(x,y)+λ2 (7)

λ̇1 =−
∂F1

∂x
λ1−

∂F2

∂x
λ2 (8)

λ̇2 =−
∂F1

∂y
λ1−

∂F2

∂y
λ2 (9)

where λi, i = 1,2 represent the conjugate momenta to x,y. Note that this is a conservative system which may be derived
from a Hamiltonian given by

H (qqq,,,λλλ ) =
||λλλ ||2

2
+λλλ ·FFF(qqq). (10)

The most probable path to transition between adjacent LCS-bounded regions is determined by solving the system
of Eqs. (6)–(9) subject to boundary conditions describing the equilibria in Gi. Let the coordinate of A be given by qqqA

and, selecting B as the boundary point of interest without loss of generality, let qqqB denote the coordinate of B. Then the
boundary conditions for the most probable path are, for FFF(qqqA) = FFF(qqqB) = 000, qqq(t → −∞) = qqqA, qqq(t → ∞) = qqqB, and
λλλ (t →−∞) = λλλ (t → ∞) = 000. Determining the most probable path connecting qqqA and qqqB is equivalent to solving a two
point boundary value problem in four dimensions.

It is important to note that in the case of infinitesimal noise, escape paths must pass through saddle points (B or C)
because passage along the boundary does not satisfy Hamilton’s principle. In the case of non-infinitesimal noise this is not
the case, but if the noise is small enough then we use the infinitesimal noise case as a first order solution off which we
perturb (Schuss and Spivak, 1998). The point A is a stable equilibrium in the original formulation, which means with the
addition of small noise, a random walk will tend to bring a particle at the edges of the basin of attraction to the center. This
statistically-expected behavior has as exceptions these “rare events” corresponding to transitioning, which are on average
expected after time TS but is exponential in distribution. In the limit of small noise, we assume that the relaxation time for
a particle in the flow (that is, the time required for a particle in the basin of attraction of A to settle to the neighborhood of
A) is much less than the switching time.

In our analysis, we set qqqA to be the gyre attractor and qqqB as one of the boundary saddle through which escape occurs2.
Since both are saddle equilibria in the full set of the equations of motion, finding the most probable path mathematically
requires identifying a heteroclinic orbit connecting the two points. To solve for the path numerically, we implement an
algorithm known as the iterative action minimizing method (IAMM) (Lindley and Schwartz, 2013). We then employ
continuation using Auto’s HomCont (Doedel et al., 2008) to increase the accuracy of the approximation and to study the
behavior of the path for different parameter values.

Figure 3(a) shows a simulation-derived probability density of paths to escape imposed over the most likely path as
predicted by the theory. This theoretical analysis suggests that it is potentially possible to devise energy efficient control

2In the presence of noise, the likelihood of escape for any particle in Gi is dependent on the particle’s proximity to the gyre boundaries and the noise
intensity. Near the boundary saddle the vector field becomes very weak, resulting in noise dominating the dynamics. This results in high instability and
corresponds to high escape likelihoods in the neighborhood of the boundary saddle.
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Fig. 3. (a) Comparison of the escape trajectories (color) and the most probable path to escape as calculated using theory (line) for the
case of no control. Red indicates a higher incidence of occurrence while blue shows lower occurrence. The results are shown on a
logarithmic scale to accentuate the ridge of higher probability. (b) Comparison of the switching time TS as predicted by large-fluctuation
theory in Eq. (5) (dashed lines) and computed from an average over many stochastic trials (points). Three regimes were examined: black
represents no control, red represents c≈−0.31 and blue represents c≈ 0.1. The parameters used to for both figures were A = 1, s = 1
and µ = 1.

strategies for autonomous vehicles by leveraging the surrounding environmental. However, the described approach requires
complete, although not perfect, knowledge of FFF(qqq).

In general, it is unreasonable to assume FFF(qqq) can be perfectly known for any given workspace W , even more so by
small resource constrained vehicles. Since LCS delineate regions in the flow that exhibit distinct dynamics, it suggests
that it is possible to provide a reduced-order representation of FFF(qqq) using only the locations of the LCS boundaries. The
locations of LCS boundaries can be approximated using historical and ocean model data. Recent work has even shown
that LCS boundaries can also be tracked, potentially in real-time, by mobile robot teams using the strategy described in
(Michini et al., 2014). As such, rather than assume FFF(qqq) is known, we assume FFF(qqq) can potentially be inferred from the LCS
boundaries. In fact, our theoretical analysis shows that “optimal” escape paths from Gi move the particle/passive vehicle
along the direction of the flow field towards the boundaries of Gi. This suggests that it is possible to achieve comparable
performance using only knowledge of the LCS boundary locations, i.e., partial knowledge of FFF(qqq), to devise a simple
control strategy that will enable an autonomous vehicle to effectively navigate from one LCS-bounded region to another.
The result would be an energy efficient control strategy that leverages the surrounding environmental dynamics without
requiring explicit computation of “optimal” escape paths and subsequently full knowledge of the vector field. We present
our controller synthesis in the following section.

3.2. Controller Synthesis

Consider a planar AUV with kinematics given by Eq. (1) operating in a workspace W = ∪M
i=1Gi where each Gi denotes a

convex region whose boundaries are defined by LCS such that the flow within each Gi is gyre-like. Consider the following
controller acting in gyre Gi:

uuu = ωωω× c
[ f1, f2,0]
||[ f1, f2,0]||

, (11)

where c denotes the controller gain, [ f1, f2,0] represents the conservative part of the vector field FFF with an augmented
third dimension, and ωωω = [0,0,1]T . The above control strategy was first introduced in (Mallory et al., 2013a) and further
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analyzed in (Heckman et al., 2014). When c > 0 the controller effectively pushes the vehicle towards the boundary of Gi in
a direction that is perpendicular to the flow at the vehicle’s location. Similarly, when c < 0 the controller pushes the vehicle
towards the center of Gi.

A significant advantage of the proposed control strategy in Eq. (11) over the computation of most likely escape paths
is that it does not require full knowledge of the flow field. Furthermore, when c > 0, a vehicle is more likely to escape a
given Gi as c increases. Figure 3(b) demonstrates this relationship by comparing the theoretically predicted (based on the
optimization framework described in Section 3.1) and numerically simulated (Monte-Carlo simulations) switching time
from one Gi to any adjacent Gi as a function of the noise intensity for three values of control gain c. Note that escape times
exponentially decrease when c > 0 while escape times increase when c < 0 for different noise intensities, as predicted by
Eq. (5).

These results suggest that the controller given by Eq. (11) effectively aids or abates the probability to transition between
basins and affects the switching time. Furthermore, similar to the “optimal” escape paths, the proposed control strategy
requires minimal control effort expenditure of the vehicle by leveraging the surrounding environmental dynamics. As such,
the proposed strategy should result in more energy-efficient trajectories compared to shortest distance paths that do not
account for the external flow field.

It is important to note that for robots to employ the proposed controller they must have knowledge of W , the locations of
the boundaries of Gi, and the ability to localize within each Gi. While it may be unreasonable to expect resource constrained
AUVs to be able to determine the LCS locations in real-time, it is possible to compute approximate LCS boundary locations
using historical and ocean model data obtained a priori. Furthermore, recent work has shown the possibility of tracking
these boundaries using robot teams (Michini et al., 2014). As such, these assumptions similar to autonomous ground or
aerial vehicle having a map of the environment.

3.3. Controller Analysis

The proposed control strategy should enable robots to effectively navigate in W . The analysis thus far has focused on
the stochastic transitions between adjacent Gi, but in the case where two regions are not adjacent, the robot will need to
maneuver through multiple gyres before ultimately reaching its goal location. We begin with a statement of our theoretical
result and follow an example to show the process of calculating transition probabilities for multiple transition systems.

Proposition 1 Given the connected set W and its associated graph G , Vj is reachable by any vehicle with kinematics given

by Eq. (1) and control strategy (11) initially in Vi for any i, j ∈ {1, . . . ,M}. Furthermore, average transition times between

two cells Vi, Vj may be calculated using Eq. (5) by applying the theory of most probable paths.

The sketch of the reachability proof is provided in Appendix A. The result is clear to those familiar with Markov
chain analysis, but we carefully define the probability concepts as they relate to the workspace W in order to prove the
approximate switching times between individual gyres. To demonstrate how average transition times between arbitrary
gyres can be calculated, consider the example of a gyre-driven flow with dynamics given by Eq. (4) in a 3×2 arrangement of
Gi as in Figure 4. Specifically, consider the calculation of the expected switching time between two states that do not share
a boundary saddle, e.g., P16 in Figure 4. Following the procedure illustrated in (Lawler, 2006), we modify the transition
matrix TTT (see Eq. (13) in Appendix A) such that G6 is an absorbing state, i.e. we establish an absorbing boundary to all
transitions to G6 and find the expected number of iterations of the matrix necessary until absorption. That is, initialize the
matrix:
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Fig. 4. Arrangement of the six-gyre system with diagram of boundary points for the integral in Eq. (3). Note that in this workspace, PAC
contributes to the probability of transitioning from G1 to G2 as well as G4 and G5.
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 . (12)

Note that QQQ is a substochastic matrix representing transitions between transient states. The procedure calls for calculating
the matrix MMM = (III−QQQ)−1 whose ( j, i) entry represents the expected number of visits to Gi starting at G j. By summing MMMT

over the transient states Gi assuming we will obtain the expected number of transitions to reach state Gi from state G j. We
find the expected number of transitions to reach state G6 from G1 to be 47

11α
; the mean time to make this transit therefore

is 47
11α
·TS. The expected number of transitions if the particle starts in a different region is provided in Table 1.

Table 1: Expected number of transitions required to reach region G6 from the initial region Gi. The number of transitions
increases considerably if there is no shared boundary between the initial region and G6. Note that the fractions are not
reduced in order to compare the expectation value directly.

G1 G2 G3 G4 G5

235
11α

188
11α

136
11α

231
11α

168
11α

4. Experimental Methodology

To experimentally evaluate the control strategy using an experimental robotic platform, we will employ our multi-robot
Coherent Structure Testbed (mCoSTe) (Larkin et al., 2014). The mCoSTe is an indoor laboratory experimental testbed that
consists of several flow tanks and a fleet of micro-autonomous surface vehicles (mASVs). The mASVs are differential drive
surface vehicles equipped with a micro-controller board, XBee radio module, and an inertial measurement unit (IMU). The
vehicles are approximately 12 cm long and have a mass of about 45 g each (see Figure 5(b)). Localization for the mASVs
is provided by an external motion capture system.

We employ the mCoSTe’s Multi-Robot (MR) Tank, which is 3×3×1 m3 in size (see Figure 5(a)) in our experiments.
The flows in the MR tank are patterned after the gyre flow model given by Eq. (4). We refer the interested reader to (Larkin
et al., 2014) for a detailed description of the design and validation of the mCoSTe.
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(a) (b)

Fig. 5. Photos of (a) multi-robot (MR) tank and (b) three mASVs in the MR tank.

We first experimentally validate the exponential scaling for the noise-induced transitions between LCS-bounded regions
as shown in Figure 3(b) with and without the controller given by Eq. (11). Additionally, we show how most probable escape
paths as predicted by minimizing the action functional given by Eq. (3) correspond to more energy efficient trajectories out
of given Gi.

4.1. Stochastic Escape Times

Using a simulated time-invariant flow field given by Eq. (4), we operated the mASVs in still water in the MR tank and
examine whether the vehicles eventually leave the specified region or gyre, Gi. This setup was employed to allow for
the inclusion of different amplitudes of noise in the vector field, which otherwise would be difficult to quantify. Further,
establishing a steady state flow on the scale of the MR tank that would exhibit approximately the same deterministic flow
behavior as Eq. (4) is a challenge in this novel testbed. The mASVs were controlled using a waypoint controller with the
following waypoint-update scheme:

qqqn+1 = qqqn +h(uuun +FFF(qqqn))+ηηηn

where we set h = 0.1 to create a sufficiently dense set of waypoints. In our experiments, the parameters in Eq. (4) were
chosen to be A = 1, s = 1, µ = 1 such that no new waypoint is greater than 20 cm away from the vehicle’s current position.
Each Gi was a single 1.2× 1.2 m2 gyre with surface flows and LCS boundaries similar to those shown Figure 1(b). We
consider a stochastic flow to measure escape times for control constants c = {−0.5,0,0.5}. In this case ηηηn =

√
hσN (0,1)

where N (0,1) represents a vector of random numbers drawn from a Gaussian distribution with mean 0 and standard
deviation 1. Note that as h scales the step size, the numerical noise intensity, or diffusion, scales as 1/h. We set the noise
intensity to be D = 0.1 resulting in σ ≈ 0.45; this results in a random distribution of waypoints around the position qqqn with
drifting in the direction of the gyre flow. Since the mASV is non-holonomic, its waypoint controller is formulated with this
restriction in mind.

4.2. Minimum Action Paths

To determine the energy efficiency of the minimum action paths, we consider the average control effort expenditure of a
vehicle executing the optimal escape trajectory predicted by the minimization of the action functional given by Eq. (3).
To create a gyre-like flow in the MR tank, four rotating cylinders with diameter approximately 9 cm are placed in the MR
tank at the vertices of a 1×1 m2 square centered in the tank and set to rotate at approximately 20 Hz. The water depth is
approximately 30 cm. The resulting flow in the MR tank is similar to that modeled by Eq. (4). In this environment, a single
mASV is placed at a point along the calculated optimal path out of the flow and is instructed to exit the region by following
two different paths. The first path is the minimum distance trajectory between the vehicle’s starting position and the goal
position, i.e., the boundary saddle. This is the baseline case where the minimum distance trajectory is the optimal path
without considering the external flow field. The second path is the minimal action path obtained by minimizing Eq. (3). The
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Table 2: Comparison of escape times for the stochastic escape experiments for two different values of control and without
control. c = −0.5 corresponds to the controller pointing inward, c = 0 no control and c = +0.5 the controller pointing
outward.

c Escape time (sec) Number of trials
−0.5 977 52

0 363 55
+0.5 223 65

resulting desired trajectories are then approximated by a series of waypoints. In our experiments, the speed of the mASV
along the trajectories was set such that the average time required to reach the waypoint is approximately 22 sec.

5. Experimental Results
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Fig. 6. Histograms of measured escape times from the simulated gyre with stochastic effects during the stochastic escape experiment,
showing data for (a) c = 0.5, (b) c = 0 and (c) c =−0.5. The overlaid curves indicate the approximate pdf of escape times using a normal
kernel for smoothening.

We begin with the results of the stochastic escape experiments. In the presence of noise, the mASV lingered in Gi for
some time before stochastically escaping. We recorded the trajectories, waypoints and total time required for the mASV
to leave the gyre for each of the three values of c. Figure 6 shows three histograms of measured escape times from the
simulated gyre for the number of trials specified in each of the control regimes. Figure 8 shows the densities of the truncated
prehistories for the mASVs as they escaped the simulated gyre for the three different gyroscopic control cases. Table 2
provides the calculated mean escape times for each value of c and the number of trials completed for each case.
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Fig. 7. The slope field of Eq. (4) overlaid with the actual paths followed by the mASV out of Gi. Blue lines correspond to the trials where
the mASV was directed to follow the optimal path for c = 0.097 whereas red lines represent the straight-line path trials. The slope field
provides only a theoretical representation of the flow lines and suggests that following the optimal path minimizes the current the mASV
must overcome in order to reach its destination. The parameters used to generate the simulated flow field were A = 1, s = 1 and µ = 1.

For the minimum action path experiments, we compare a series of desired trajectories and measure their performance
based on control effort. The paths we compare are:

1. Straight-line path. Starting at an arbitrary point, follow waypoints along a desired path that minimizes the distance out
of the current Gi.

2. Optimal path with c = 0.
3. Optimal path with c = 0.097. Changing values of c results in a homotopy of the path to escape.

Figure 7 compares the paths that the mASV followed as it exited Gi following both the straight-line path and optimal
path as calculated using the flow field model in Eq. (4) with a c value that was witnessed to grant the least resistance with
the imposed flow.

We use two metrics to determine the effort exerted by each vehicle. The first metric is the average RMS signal to the two
motors for a given trial normalized by time-of-travel, and the second is normalized by total path length. The first metric gives
a measure of the total required actuation while normalizing the data for differences in total time to execute the specified
path; the second demonstrates whether the mASV leveraged the flow to reach its goal. Table 3 displays the data with 95%
confidence intervals. Note that the signal to the motors ranged from (−255,+255), so we use the root-mean-square of the
signal to both motors to represent the instantaneous control effort. The data demonstrate that following the path obtained
by solving the boundary value problem results in significantly lower control effort. The decrease in control effort can be
reasonably inferred to be the result of not fighting against the flow and instead traveling along flow lines to reach the
destination. Figure 7 shows that while the two paths are very similar in appearance, even a very small heading correction
to follow the flow lines results in significantly lower control effort.
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Table 3: Results from the path following experiments showing two metrics for average control effort to follow the path to
escape.

c Time-normalized signal Path length-normalized signal Number of trials
straight-line 2271±118 79287±4955 42
+0.097 1575±141 54276±5158 27

0 2227±161 59005±4418 27

6. Discussion and Experimental Insights

The escape trajectories taken by the mASV in the stochastic escape experiments and the optimal escape trajectories of a
passive particle show good agreement. Both Figure 3(a) and the left column of Figure 8 show Monte Carlo simulations of
a particle exiting its initial region and demonstrate a strong preference for the particle to approach the saddle point before
exiting Gi. This is also exhibited in the stochastic escape experiment, shown in the right column of Figure 8. Note that the
results for stochastic escape are rotationally invariant, i.e., the escape paths were the same independent of which saddle was
chosen as the exit point, in the double-gyre system. However as shown in Table 1, with a more complex workspace including
many regions, predicting transition times between regions requires the additional step of considering non-advantageous
traditions. This result suggests that a state-dependent controller that inhibits or encourages transitions has the potential to
affect not only switching times out of a gyre but also bias transitions to more efficiently achieve a global spatial distribution
of agents.

While the theory in this work has been established for a time-invariant vector field in which stable and unstable manifolds
coincide with LCS, we have applied the tools to a real system in which such assumptions do not necessarily apply. While
the flows created in the MR tank are mostly time-invariant, small variations over time exist nevertheless due to difficulties in
maintaining ambient experimental parameters such as temperature and air flow at such physical scales. As a topic of future
work, we would like to extend these theoretical results to regularly time-varying flows in which we employ actual LCS
rather than their time-invariant counterparts. We also plan to establish a ground truth for the flow in the tank, in particular
developing a quantitative understanding of the LCS.

Furthermore, the scaling predicted in Eq. (5) and illustrated with numerical comparison in Figure 3(b) suggests that
controllers which make use of the underlying environmental dynamics and environmental stochasticity may be rigorously
developed to manipulate the switching time of a robot operating in a noisy flow. This result is confirmed experimentally in
Figure 6; by employing a simple control strategy, the mASV effectively manipulated its distribution of residence times in
a simulated flow (see Table 2). Importantly, the data in Figure 3 does show exponential behavior since the logarithm of the
escape times fall almost entirely on a straight line. The result is only predictive up to a prefactor in Eq. (5). This prefactor
may be calculated in simulation and is generally approximated by a constant. While the explicit dependence of the mean
transition time between gyres on the parameter c is difficult to derive analytically for most nonlinear vector fields. However,
one may interpolate between c values for which escape data can be empirically estimated to predict the appropriate control
input to obtain a desired mean escape time. We are currently seeking to better understand how different values of c impact
the bounds of the mean escape time under different flow conditions.

Finally, we have confirmed that the most likely path as predicted by the theory not only lies along the peak of the
observed escape trajectories as shown in Figure 3(a), but also requires less control effort than following a straight-line
path to exit the initial Gi. The last column in Table 3 demonstrates that the total control effort by the mASV following the
optimal path is considerably lower than the control effort exerted by the vehicle executing the straight-line path. This is not
surprising since the mASV travels with the flow and is pushed along by the current and only actuates when necessary to
correct course. More interestingly is that the proposed control strategy achieves comparable or slightly better performance
from a control effort expenditure perspective. This is significant since the proposed controller can be implemented with
only limited knowledge of the flow field.



Heckman, Hsieh, and Schwartz 15

This work demonstrates that the theory of large fluctuations applies to macroscopic systems of autonomous vehicles
operating in noisy environments. The concepts of most likely paths and rare events explained in our methodology were
originally developed for microscopic systems undergoing switching due to thermal fluctuations. However, our experiments
suggest that a macroscopic agent operating in a massive stochastic environment is subject to the same phenomena as its
microscopic counterparts. This has implications for the design of controllers in environments where the structure of the
flow is not necessarily known, significant stochastic fluctuations are present, and control effort is costly.

7. Future Work

To the authors’ knowledge, this is one of the first attempts to employ knowledge of coherent structures in designing
more energy efficient navigation strategies for autonomous vehicles operating in uncertain fluidic environments. The main
contribution lies in the synthesis of minimal control effort strategies using knowledge of most likely escape paths arising
from noise-induced large fluctuations. The result is a strategy that leverages the surrounding environmental dynamics and
the inherent environmental noise to minimize the overall control effort of the to navigate from one LCS-bounded region
to another. The proposed strategy was evaluated using a novel testbed capable of creating controlled Lagrangian coherent
structures in a laboratory setting. This is the first experimental study of most likely escape trajectories and minimal control
effort escape trajectories for unmanned underwater/surface vehicles operating in realistic complex flows.

One future application is the extension of the proposed AUV/ASV control strategy to domains consisting of geometri-
cally complex LCS-bounded regions. For instance, the LCS may be time-dependent which would more closely resemble
ocean flows or the LCS-bounded regions may be non-convex. We would also like to revisit the assumption of additive noise
drawn from a Gaussian distribution and the use of the time-invariant gyre-driven flow model. Most noise is in fact drawn
from a colored distribution and arises in modeling as multiplicative noise; both of these factors have an effect on the shape
of the most likely paths and the distribution of rare events. Also, the time-invariant gyre-driven flow model used in Eq. (4)
follows the position of a particle in a two-dimensional vector field whereas actual field deployments require taking into
consideration the third dimension and the actual size and geometry of the vehicle. We would like to extend the existing
framework to properly account for these factors.
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A. Transition Probabilities Between Cells

To prove the connectivity and recurrence of the graph of gyres and the calculate probabilities of switching between them,
we conduct an analysis which is based on discrete-time Markov chain models, provided for the sake of completeness and
following a standard analysis of such chains. The region in which the agent is located corresponds to states in the chain,
and the likelihood of switching between regions within a fixed time TS is the transition probability. Recall TS represented
the mean time required to switch between two adjacent gyres.

First consider the case where the two regions Vi, Vj are adjacent and possibly also adjacent to a leave state. The graph for
this workspace is G = ({Vi,Vj,VL},{ei j,ei,leave,e j,leave}). The dynamics on the graph are described by a discrete Markov
chain in which the states are vertices on the graph and transitions between the states are along edges and occur according
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to the theory of rare events described in Section 3.1 because deterministically there are no transitions. The Markov chain
dictates that there is a nonzero probability of transitioning along edge e12 to the adjacent region.

Now consider the case where Vi and Vj are not adjacent. Since all vertices in the graph are adjacent to at least one other
vertex, then by induction the graph must be traversable to a node adjacent to Vj, i.e. there exists a path between any one state
and another. The probability of following any particular path may be calculated by multiplying the transition probabilities
between states in the Markov chain. This probability is certainly nonzero since all transition probabilities between adjacent
regions are nonzero.

Moreover, the controller in Eq. (11) has already been shown to directly manipulate the transition times via directly
modifying the action functional in Eq. (3). This proves that not only are all states reachable, but that we can formally
evaluate the expected time required to reach a given state and increase or decrease that time with the controller in (11).

In this work, we assume W is composed of a union of convex LCS bounded regions denoted by Gi. The algorithm
asymmetrically extends to more general convex environments by calculating the action RAB,RAC, etc. along heteroclinic
connections that exist between the deterministically stable equilibrium and saddles along the basin boundary. The mean
time to observe a given trajectory will then also be given by Eq. (5). In general, the convexity assumption for each Gi can
be relaxed to accommodate star convex geometries. However, more topological insight is needed to extend these results to
general non-convex geometries and their impact on transition likelihoods between neighboring cells to ensure that vehicles
are not trapped in an infinite sequence of transitions between two adjacent LCS bounded regions.

Consider the example of a gyre-driven flow with dynamics given by Eq. (4) in a 3×2 arrangement of Gi as in Figure
4; we choose the boundaries to be reflecting so there is no absorbing state, but the process can also be considered for the
case where a particle may leave the workspace.

We have already described the probabilistically-preferred paths in Section 3.1. In the case of the A→ C path, upon
arriving at C the particle has an equal chance of either transitioning to G2 or returning to G1 as before. In the A→ D case
however, upon arriving at D the particle is equally likely to transition into G2,G4 or G5 or return to G1. Therefore, to
transition from G1→ G2, the probability is P12 =

PAC
2 + PAD

4 . Since the paths are equally likely, then P12 =
3α

4 .
The transition matrix for the system in Figure 4 may be constructed using the transition rates in Figure 9 and therefore

used to ascertain any arbitrary probabilities for transitioning between regions, e.g. the transition from G1→G6 as illustrated.
It may also be used to show that all states of the chain are recurrent, and therefore any region is accessible from another
arbitrary region within a certain average length of time. The transition matrix entries are given by Pi j, where i is the initial
region and j is the region to which a switch may occur with probability Pi j. In consideration of the Markov diagram in
Figure 9, the matrix is:

TTT =
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(13)

For the Markov chain to be irreducible, the matrix TTT must have a simple eigenvalue of unity whose left eigenvector
has only positive entries. In fact TTT satisfies even stronger conditions and represents an ergodic Markov chain because it is
positive recurrent and all states are aperiodic; however, the chain’s irreducibility and lack of absorbing states proves that
all states in the chain are accessible from any arbitrary state.
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(a)

(b)

(c)

Fig. 8. Prehistories of stochastic escape from the initial region for controller gains (a) c =−0.5, (b) c = 0 and (c) c = 0.5. The left column
shows Monte Carlo results for 1,000 trials at each controller gain, and the corresponding image in the right column shows the history of
waypoints from the stochastic escape experiments for the same gain. The scaling for colors in both sets of figures is exponential and was
truncated such that the approach to escape is accentuated compared with the time spent near the center of the region. The parameters
used to generate the simulated flow fields were A = 1, s = 1 and µ = 1.
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Fig. 9. A Markov diagram of the transitions between the workspace modeled in Figure 4. Since the transitions regions all have the
same dynamics, transitions between them are symmetric. However, the method need not require symmetry of transition probability to
construct the Markov chain.


