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This paper builds on the existing adaptive robust con-
trol (ARC) synthesis method introduced by Yao et al. and
presents a new method to synthesize adaptive robust con-
trollers. Based on dynamic backstepping, the approach ex-
plicitly addresses the uncertain dynamics which enters into
the system via the higher order channels of the state space
model. As such, the proposed D-ARC method addresses the
inherent weakness of the original approach where uncer-
tainty in the higher order channels are ignored. The pro-
posed approach is illustrated in simulations for controlling a
voice coil motor (VCM) actuator that serves as a read/write
head for a single stage hard disk drive (HDD). The effec-
tiveness of the resulting D-ARC controller is validated by
considering the transient performance, tracking errors, and
disturbance rejection of the VCM operating in both the track
seeking and track following modes.

1 Introduction
Existing efforts in synthesizing suitable controllers for

systems that exhibit uncertain nonlinear dynamics generally
fall into two categories: adaptive control (AC) and determin-
istic robust control (DRC). AC approaches are generally bet-
ter at dealing with structured or parametric uncertainties but
conventional strategies can suffer from poor parameter esti-
mation leading to unpredictable system performance. These
drawbacks are more pronounce when the system is subject
to uncertainties resulting from unmodeled dynamics and out-
put disturbances [1]. In contrast, DRC strategies are capable
of dealing with both dynamic and parametric uncertainties.
In addition, systems with robust feedback can reach prede-
termined, rather than zero, steady-state errors. However, to
decrease the steady-state error, the robust controller would
often have to exert significant control effort, possibly at un-
desirably high levels.

To address these drawbacks, Yao et al. introduced adap-
tive robust control (ARC) which combines the strengths of
both adaptive and robust control approaches [2]. The ARC

is a feedback strategy that can guarantee the stability of a
system regardless of the type of disturbances and unmodeled
dynamics. The robust part of the controller exploits the adap-
tive part of the controller to decrease the tracking error at the
steady state [3]. The result is a system that benefits from
both adaptive and the robust control by targeting the differ-
ent performance regimes of the system that each is best at
impacting. By coordinating the adaptive and robust feedback
features, ARC enables robust performance of the system in
the low frequency domain in the presence of model param-
eter uncertainties. The adaptive component of the controller
allows the system to better track the desired reference trajec-
tory without the need for excessive control effort. Simulta-
neously, in the high frequency regime where the system is
prone to disturbances resulting from unmodeled dynamics,
the robust component of the controller can guarantee the sta-
bility of the system.

To address the problem of ARC design, Yao et al. pre-
sented an innovative approach to model both the parametric
and dynamic uncertainties of the system within a system-
atic backstepping framework [4]. However, the proposed
modeling approach cannot be easily handled using conven-
tional backstepping design methods since the backstepping
procedure stops once it encounters the input signal in the de-
sign process, leaving the parametric and dynamic uncertainty
terms in the model untouched. Yet, the procedure is often
used in ARC design which often results in poor closed-loop
performance, or worse, instability. An alternative synthesis
approach for dynamical backstepping design was proposed
by Zinober et al [5]. In this work, the design methodology
does not stop when it encounters the control signal but rather
encapsulates as many system states as it can into a Lyapunov
function. The advantages of this approach include the ac-
counting of all the uncertainty model structure in the design
of the robust controller as well as the inclusion of the control
input in the design of the Lyapunov function. The result is
smoother system performance when controller is in place.



In this work, we build upon [5] to extend Yao et al.’s [2]
design method to target the uncertainties not impacted by the
original ARC design. The novelty of the contribution lies
in how the proposed control synthesis algorithm handles the
uncertainties in the system model and the disturbances the
system is subject to. In the original ARC design, Yao et
al. modeled these uncertainties as disturbance signals fed
to each dynamic channel of the system. The original pro-
cedure then considers each channel individually by identify-
ing the unknown parameters of the model and proportionally
strengthening the robust design. However, the conventional
backstepping design procedure is incomplete since it stops
after the actual control variable is obtained, failing to prop-
erly address the remaining uncertainties. We present a mod-
ification to Zinober et al.’s procedure to improve the ARC
design.

To illustrate and evaluate the proposed design method-
ology, we synthesize a feedback control strategy for a voice
coil motor (VCM) which is used as a precision motion ac-
tuator in a hard disk drive (HDD). The VCM actuates the
read/write head in a HDD and must be able to transition
quickly from one track to another when it is operating in
“track-seeking” mode. The VCM must also precisely land
the read/write head on and enable it to follow the right target
track when it operates in the “track-following” mode. We
employ an ARC to enable the VCM to achieve these precise
maneuvers. The system identification data set of the HDD
servo system, including the VCM, is provided by Postleth-
waite et al. [6]. While the nominal system fitted for data
in [6] is a non-minimum phase system, the VCM is actually
a minimum phase system, especially when the sensor and
actuator are none-collocated [7]. The difference arise from
the flexibility of the arm which contributes a limiting non-
minimum phase zero into the overall transfer function [8].
The non-minimum phase zeros of the nominal linear sys-
tem becomes the internal dynamics of the closed-loop system
when the feedback controller is designed using the backstep-
ping technique which destabilizes the system internally [9].
In this paper, the nominal higher order system is reduced to
a minimum phase lower order one. We show that our ap-
proach results in a controller that is can stabilize the unstable
internal dynamics of the system despite using a backstepping
design procedure.

The rest of paper is organized as follows: Section 2 for-
mally states the problem, Section 3 describes the control de-
sign methodology, Section 4 presents the simulation results,
and Section 5 concludes the paper with a discussion on the
effectiveness of the proposed method.

2 Problem statement
Consider a single input-single output (SISO) system de-

scribed using the mixed notation given by

y(t) =
B(s)
A(s)

u(t)+
D(s)
A(s)

Λ(t)+δy(t), (1)

where A(s) = sn +an−1sn−1 + · · ·+a1s+a0, B(s) = bmsm +
bm−1sm−1+ · · ·+b1s+b0, and D(s) = dlsl +dl−1sl−1+ · · ·+

d1s+d0. The system is strictly proper, i.e., n > l,m. The pa-
rameters ai and bi are unknown constants while di is assumed
to be known. The transfer function D(s)

A(s) determines the fre-
quency bound on which the internal disturbances distort the
output of the system. All the results can be extended to the
case when the di parameters are unknown.

If the model of the system is fairly accurate and the
only concern is the unstructured disturbances, all the uncer-
tainty of the system can be modeled as a lumped unstruc-
tured output uncertainty. However, the current model helps
us extract the constituent parts of the disturbances, which
is mainly the result of structural deficiencies in the model-
ing, and design an estimator to identify it. As shown in Eqn.
(1) the auxiliary input variable Λ(t) represents the dynamic
disturbance coming from the intermediate channels of the
plant with δy(t) the output disturbance. This dynamic uncer-
tainty is modeled as [2] Λ(t) = QT Σ+∆(t). We can repre-
sent the disturbance as a linear combination of known basis
functions, Q(t) = [qp(t),qp−1(t), . . . ,q1(t)]T , and unknown
constant coefficients, Σ= [σp,σp−1, ...,σ1]

T . This represents
the core of the dynamic uncertainty which we will explicitly
use in the controller design to maintain stability and improve
the system’s achievable performance. Additionally, ∆(t) is
the disturbance modeling error which we will deal with by
modifying the robust control action to achieve robust per-
formance. Given this disturbance model, the plant given by
Eqn. (1) is represented in state space form as follows:

ẋ1 = x2−an−1x1 (2)
...

ẋn−l = xn−l+1−alx1 +dlQT
Σ+dl∆

...
ẋρ = xρ+1−amx1 +dmQT

Σ+dm∆+bmu
...

ẋn =−a0x1 +d0QT
Σ+d0∆+b0u

y = x1 +δy(t),

where ρ = n−m is the relative degree of the system, and
without loss of generality it is assumed that m < l. Figure
1 gives the block diagram for the system described by Egn.
(2). We make the following assumptions in regards to the
system and the uncertainties the system is subject to:

Assumption 1: Nominal plant is minimum phase.
Assumption 2: The sign of bm is known.
Assumption 3: The extent of parametric uncertainties, Θ

def
=

[−an−1, . . . ,−a0,bm, . . . ,b0,σp, . . . ,σ1] and the upper
bound on uncertain nonlinearities are known, i.e., Θ ∈
ΩΘ

∆
= {Θ|Θmin < Θ < Θmax}, ∆∈Ω∆

∆
= {∆(t)|‖∆(t)‖<

δy}, δy(t) ∈ Ωd
∆
= {δy(t)|‖δy(t)‖ < δd}, and δ̇y(t) ∈

Ω f
∆
= {δ̇y(t)|‖δ̇y(t)‖< δ f }.

As such, given the reference trajectory, yr(t), the objec-
tive of the design is to synthesize a control signal, u(t), such



Fig. 1. The overall schematic of the linear uncertain system.

that the output, y(t), tracks the reference trajectory as closely
as possible, in the presence of various model uncertainties.
The reference trajectory and its derivatives up to nth order
are assumed to be known, bounded, and piece-wise continu-
ous.

3 Methodology
3.1 State Estimation

We assume only the output of the system is assumed to
be measurable which means the full state of the system must
be estimated. The parameterized Kreisselmeier observer has
the advantage that the dynamics of the observer is completely
separate from the parameters of the system [10]. This fact
substantially simplifies the design of a suitable parameter
adaptation scheme. The system given by Eqn. (1) can be
rewritten in the following matrix form:

ẋ = Aox+(K−a)x1 +Bu+FΛ, (3)

where

Ao =


−kn 1 0 . . .

...
...

. . .
...

−k2 0 . . . 1
−k1 0 . . . 0

 , K =


kn
...

k2
k1

 ,

a =


an−1

...
a1
a0

 , b =


bm
...

b1
b0

 , d =


dl
...

d2
d1

 ,
B =

[
0(ρ−1)×1

b

]
, F =

[
0(n−l)×1

d

]
.

Following the design procedure described in [9], the inter-
mediate filter parameters are the solution of the following set
of equations:

ξ̇n = Aoξn +Ky(t), (4)
ξ̇i = Aoξi + en−iy(t), 0≤ i≤ n−1
v̇ j = Aov j + en− ju(t), 0≤ j ≤ m

ψ̇k = Aoψk +Fqk, 0≤ k ≤ p

where, en−i is the (n− i)th column of the n× n identity ma-
trix. The estimated states are then computed as

x̂ = ξn−
n−1

∑
i=0

aiξi +
m

∑
j=0

b jv j +
p

∑
k=0

σkψk (5)

with the estimation error, εx = x− x̂, error dynamics given by

ε̇x = Aoεx +(a−K)δy(t)+F∆. (6)

By appropriately choosing the observer gain, K, the observer
matrix, Ao, can be made Hurwitz resulting in a stable state es-
timator. The solution to Eqn. (6) can be divided into the zero
input response, ε, which satisfies ε̇ = Aoε, and the zero state
response, εu. Given Assumption 3 and the fact that matrix Ao

is chosen to be stable, we have εu(t)∈Ωε

∆
= {εu(t)|‖εu(t)‖<

δu} where δu(t) is known. In the controller design phase,
we will combine εu, the observer error resulting from the
zero state response, with the unstructured but bounded un-
certainty, ∆. While ε, the initial state of the observer, will be
treated as a disturbance and will be modulated by the robust
control or feedback gain at each step of design.

3.2 Parameter Projection
The main drawback of the conventional adaptive con-

troller is that the behavior of the parameter estimation and
consequently the overall system performance are unknown
when subject to unstructured uncertainties. Under Assump-
tion 3, a discontinuous projection is utilized to solve the ro-
bustness problem of the parameter adaptation [2] such that

˙̂
Θ = Pro j

Θ̂
(Γτ) (7)

where ˙̂
Θ and τ denote the estimated model parameters and

the regressor respectively. We note that τ will be more clearly
defined within the design procedure. This discontinuous pro-
jection guarantees the estimated parameters stay within the
pre-defined bounded region given by:

{ ˙̂
Θ}i =

0 if θ̂i = θ̂i,max and {Γτ}i > 0
0 if θ̂i = θ̂i,min and {Γτ}i < 0
{Γτ}i otherwise



This projection satisfy the property
Θ̂T
(
Γ−1Pro j

Θ̂
(Γτ)− τ

)
≤ 0 which will prove to be

useful in our stability analysis [2].

3.3 Controller Design Procedure
We present a systematic algorithm based on the back-

stepping procedure to design a dynamic ARC (D-ARC) out-
put tracking controller. The first two steps of the backstep-
ping procedure are different from the rest due to the existing
unknown high frequency gain bm. The other steps up to the
step when the actual input appears for the first time in the
equations, e.g., step ρ, are trivial and similar to the conven-
tional ARC backstepping procedure [4, 9]. After ρ, the con-
trol input, u, appears in the design procedure. A conventional
backstepping control design stops here and extracts the con-
trol signal and constructs the stabilizing Lyapunov function.
The Lyapunov function is only a function of the states up to
that stage while the other states are treated as stable since the
internal dynamics of the system is stable. However, we move
beyond the procedure in [5] and provide a procedure that is
able to impact the components of the system dynamics not
captured in previous procedures.

It is well known that the open loop system must be min-
imum phase to be stabilizable using a backstepping method.
While we do not relax this requirement, our modeling of the
uncertainties can be more effective in improving ARC per-
formance. Unlike traditional backstepping, our procedure
continues after encountering the control input where the con-
trol inputs’ derivatives appear in the virtual input parameter
designed in the subsequent steps. The approach enables us
to shape the dynamics of the control input which allows us
to filter out the high frequency chattering of the input. The
inclusion of the input variable in the Lyapunov function will
have the added benefit of limiting the control effort needed
to decrease the steady state error. We briefly summarize this
procedure below.

Step 1: The backstepping procedure starts by the deriva-
tion of the dynamics of the first error parameter, the output
tracking error denoted as z1 = y(t)− yr(t) given by:

ż1 = x2−an−1(y−δy(t))+ δ̇y(t)− ẏr(t). (8)

Since x2 is not measurable, we replace it with its estimate
given by the observer defined by Eqn. (3) resulting in:

x2 = ξn,2−ξ(2)a+ v(2)b+ψ(2)Σ+ εx2 (9)

where, εx2 , the estimation error of x2, v(2), and ψ(2) defined
as

ξ(2)
∆
= [ ξn−1,2,ξn−2,2, . . . ,ξ0,2 ],

v(2)
∆
= [ vm,2,vm−1,2, . . . ,v0,2 ],

ψ(2)
∆
= [ ψp,2,ψp−1,2, . . . ,ψ1,2 ].

The notation ∗i j denotes the j-th element of the vector ∗i.
Substituting for x2 in Eqn. (9) and using its estimate given
by Eqn. (8), we can obtain the following expression for the
dynamics of the first error parameter:

ż1 = bmvm,2 +ξn,2 +Θ
T

ω̄− ẏr(t)+ ∆̂1 + ε2. (10)

where ω̄=ω−eT
n+1vm,2, ωT ∆

= [ ξT
(2),v

T
(2),ψ

T
(2) ]+eT

1 y is used

to reconstruct the regressor, and ∆̂1 = an−1δy(t)+ δ̇y(t)+ εu
lumps all the bounded unstructured uncertainties to be dealt
at the robust control design stage. We note ei denotes the
ith column of the identity matrix of the proper size with vm,2
being the obvious choice of the virtual input at this design
stage since it is the actual control, u(t), which appears only
after differentiating the input ρ times (this is less than any
other parameters in the equation, see Eqn. (5)).

If vm,2 was is actual control, we can design a control
law α1 to stabilize the system given by Eqn. (10). Since it
is not, we define z2 as the error between actual and desired
value of vm,2, i.e., z2

∆
= vm,2−α1. Now, considering α1 as

the new control input, we design the ARC to drive z1 to be
as small as possible despite the various system uncertainties.
According to the ARC backstepping procedure the controller
design is separated into two parts, α1 = α1a +α1s. The first
term is the adaptive part and is designed to compensate the
parameter uncertainties, and the second term guarantees the
robust stability of the system in the presence of unstructured
uncertain dynamics.

Let ϕ
∆
= ξn,2 + Θ̂T ω̄− ẏr(t) be the error dynamics, then

Eqn. (10) can be rewritten as ż1 = bmz2 + bm(α1a +
1

b̂m
ϕ)+

bm

(
1

bm
− 1

b̂m

)
ϕ + bm(α1s,1 + α1s,2) + Θ̃T ω̄ + ∆̂ + ε2 where

Θ̃ = Θ− Θ̂ denotes the parameter estimation error. In or-
der to design the stabilizing control action, we propose the
first Lyapunov function V1 = 1

2 z2
1 +

1
q1

εT Poε. The positive
definite matrix, Po, is the solution of the Lyapunov equa-
tion for the observer, AT

o Po + PoAo = −I, and q1 is a de-
sign parameter to be chosen. Then α1a = − 1

b̂m
ϕ and α1s1 =

− 1
bm,min

(c1z1 + q1z1) are chosen to stabilize V1. Substitut-

ing them into V̇1 we get V̇1 ≤ bmz1z2− c1z2
1 + z1{bmα1s2 +

Θ̃T φ1 +∆1}−q1(z1−1/2q1ε2)
2.

To keep track of the procedure, new parameters are num-
bered as, φ1

∆
= ω̄− 1

b̂
ϕen+1, and ∆1

∆
= ∆̂. There exists a

robust control function α1s2 satisfying the following condi-
tions:

1. z1{bmα1s2 + Θ̃T φ1 +∆1}< r1, and
2. α1s2z1 ≤ 0.

Examples of smooth α1s2 satisfying these two conditions can
be found in [2] and [11]. Essentially, the first condition in-
dicates that the synthesized robust controller dominates the
model uncertainties. r1 is a design parameter and the level
of control accuracy is to be adjusted by this design param-
eter. Smaller r1 leads to faster convergence, but also bigger
control effort. The second condition ensures that α1s2 is dis-
sipative in nature and does not interfere with the functionality
of the adaptive control part α1a.

Step 2: In the dynamics of the second error variable,
ż2 = v̇m,2 − α̇1, the derivative of α1 inherits uncertainties
from the dynamics of the system. The uncertain part of
it, α̇1u, captures the uncertain parameters’ estimation errors,



structural uncertainties, and state estimation errors. The re-
maining known states and parameters can be lumped into
α̇1cwhich is defined as:

α̇1c
∆
=

∂α1

∂y

(
ξn,2 + θ̂

T
ω

)
+

∂α1

∂ξn,2

(
−k2ξn,1 + k2y(t)

)
+

∂α1

∂ξ(2)
ξ̇(2)+

m

∑
i=1

∂α1

∂vi,2
[Aovi + en−iu(t)]2

+
∂α1

∂ψ(2)
ψ̇(2)+

∂α1

∂yr
ẏr +

∂α1

∂ẏr
ÿr,

α̇1u
∆
=

∂α1

∂y

(
θ̃

T
ω+∆1 + ε2

)
+

∂α1

∂θ̂

˙̂
θ.

The unknown part which cannot be worked out due to the
various uncertainties must be dealt with via robust feedback.
The known part can be easily compensated to shape the dy-
namics of the error. Therefore the second error subsystem is
given by:

ż2 = v̇m,2− α̇1 =−k2vm,1 + vm,3− α̇1c− α̇1u. (11)

Let the second Lyapunov function be defined as V2 = V1 +
1
2 z2

2 +
1
q2

εT Poε. Like the first step, to stabilize the system
vm,3 is taken as the virtual input and α2 = α2a +α2s is the
control designed to stabilize this subsystem with α2a given
by:

α2a
∆
= − b̂mz1 + k2vm,1 + α̇1c− c2z2−q2

(
∂α1

∂y

)2

z2. (12)

Substituting Eqn. (12) into Eqn. (11), the time derivative
of the second Lyapunov function satisfies the following in-
equality:

V̇2 ≤ z3z2− c1z2
1− c2z2

2 + z1

{
bmα1s2 + θ̃

T
φ1 +∆1

}
+ z2

{
α2s + θ̃

T
φ2 +∆2

}
− z2

∂α1

∂θ̂

˙̂
θ

−q1

(
z1−

1
2q1

ε2

)2

−q2

(
z2

(
∂α1

∂y

)
+

1
2q2

ε2

)2

with φ2
∆
= −

(
∂α1
∂y

)
ω+ e∗n+m+1z1 and ∆2

∆
= −

(
∂α1
∂y

)
∆̂.

The above equation tells us if vm,2 is our input, we can stabil-
ity the subsystem by choosing the control signals to satisfy
given conditions. However, since we do not access to the
actual control input yet, we continue the procedure.

Step j (3≤ j ≤ (ρ−1)): By mathematical induction the
results for all intermediate steps up to ρ− 1 can be proven.
For step j we express the derivative of z j = vm, j −α j−1 as
ż j = −k jvm,1 + vm, j+1− α̇( j−1)c− α̇( j−1)u. Similar to pre-
vious steps, α̇( j−1)c encapsulates all the known terms with
α̇( j−1)u containing the unknown terms. Treating vm,( j+1) as
the virtual control input, the compensation part is synthe-
sized similar to Eqn. (12): α ja

∆
= − z( j−1) + k jvm,1 +

α̇ j−1c − c jz j − q j

(
∂α j−1

∂y

)2
z j. The jth Lyapanov function

would be defined as Vj = Vj−1 +
1
2 z2

j +
1
q j

εT P0ε and its time
derivative given by

V̇j ≤ z jz( j+1)−
j

∑
i=1

ciz2
i −

(
j

∑
i=2

zi
∂αi−1

∂θ̂

)
˙̂
θ

+z1

{
bmα1s2 + θ̃

T
φ1 +∆1

}
+

j

∑
i=2

zi

{
αis + θ̃

T
φi +∆i

}
−q1

(
z1−

1
2q1

ε2

)2

−
j

∑
i=2

qi

(
zi

(
∂αi−1

∂y

)
+

1
2qi

ε2

)2

Step ρ: This is the step where the actual control input,
u(t), appears in the design procedure for the first time as
a part of v̇m,ρ. The conventional procedure ends the back-
stepping at this step and extracts control input. However,
in our method we continue with the procedure and define
zρ = vm,ρ − αρ−1 such that żρ = −kρvm,1 + vm,(ρ+1) + u−
α̇(ρ−1)c − α̇(ρ−1)u. Then αρa is synthesized the same way
as α ja as in Step j, except that it is augmented by u re-

sulting in αρa
∆
= − z(ρ−1)+ kρvm,1− u+ α̇(ρ−1)c− cρzρ−

qρ

(
∂α(ρ−1)/∂y

)2zρ.
Step k ((ρ+1)≤ k ≤ (n−1)): The significance of

these steps with respect to step ρ and consequently the steps
before is that the time derivatives of the control input, u(t),
now appears in the equations as part of α̇(k−1)c as seen below:

α̇(k−1)c
∆
=

∂αk−1

∂y

(
ξn,2 + θ̂

T
ω
)
+

k−1

∑
i=2

∂α1

∂ξ(i)
ξ̇(i) (13)

+
l

∑
i=2

∂αk−1

∂ψ(i)
ψ̇(i)+

k−1

∑
j=2

m

∑
i=1

∂αk−1

∂vi, j
(v̇i) j

+
k−1−ρ

∑
i=1

∂αk−1

∂u(i−1) u(i)+
k−1

∑
i=1

∂αk−1

∂y(i−1)
r

y(i)r .

Step n: In this final step the D-ARC output tracking
controller is synthesized. As in the previous steps, we ex-
press the derivative of zn as żn = v̇m,n− α̇(n−1) = −knvm,1−
α̇(n−1)c− α̇(n−1)u. The unknown and known parts of α̇(n−1)
are not so different from their counterparts in the previous
steps. In this step we note that vm, j, which has been treated
as a virtual input, no longer appears in the error dynamics.
To stabilize the Lyapanov function, suitable dynamics is im-
posed on this error subsystem by holding the following for
the nth error dynamics:

knvm,1 + α̇(n−1)c =cnzn + zn−1 (14)

−αsn +qn

(
∂α(n−1)

∂y

)2

zn.

Then, the time derivative of the overall Lyapunov function,



V =Vn =
1
2 ∑

n
i=1 z2

i +∑
n
i=1

1
qi

εT P0ε, satisfies:

V̇n ≤−
n

∑
i=1

ciz2
i + z1

{
bmα1s2 + θ̃

T
φ1 +∆1

}
(15)

+
n

∑
i=2

zi
{

αis + θ̃
T

φi +∆i
}
+

(
n

∑
i=2

zi
∂α(i−1)

∂θ̂

)
˙̂
θ.

The control input u is then obtained by solving the linear
time-varying differential Eqns. (13) and (14) resulting in:

u(m) =
1

∂α(n−1)

∂u(m−1)

{
− knvm,1 + cnzn +qn

(
∂α(ρ−1)

∂y

)2

zn (16)

−
(n−1)

∑
i=2

∂αn−1

∂ξ(i)
ξ̇(i)−

∂α(k−1)

∂y

(
ξn,2 + θ̂

T
ω
)

−
l

∑
i=2

∂αn−1

∂ψ(i)
ψ̇(i)−

n

∑
j=2

m

∑
i=1

∂αn−1

∂vi, j
(v̇i) j

−

(
(n)

∑
i=2

zi
∂α(i−1)

∂θ̂

)
φn−αsn−

k−ρ−1

∑
i=1

∂α(k−1)

∂u(i−1) u(i−1)

}
.

3.4 Stability Analysis
The Lyapunov function defined in the previous section

embeds the states of the n-dimensional plant given by Eqn.
(2), the three n-dimensional filters given by Eqn. (4), and the
n+m+ p+ 2 estimated parameters. The rest of the states
can be proven to be stable since the estimation filter is stable
and the system is minimum phase [9].

Lemma 1. Let the parameter estimate be updated by Eqn.

(7) with τ = ∑
n
i=2 ziφi, φi

de f
= −

(
∂α(i−1)/∂y

)
ω̄ with i =

1, ·,n, and φ1
de f
= ω̄+ 1

b̂
ϕen+1, φ2

de f
= −

(
∂α1
∂y

)
ω̄+e∗n+1z1.

If the control parameters, ci, are chosen such that ci = fi +

gi‖Γφi‖2 +hi

∥∥∥ ∂α(i−1)

∂θ̂

∥∥∥2
, where fi,gi,hi > 0 are chosen such

that gi ≥ n
4 ∑

n
j=1

1
h j

, then the system is stable with respect to
the Lyapanov function V , and the control law u guarantees
that

V ≤ exp(−2 fvt)V (0)+
rv

2 fv
[1− exp(−2 fvt)] (17)

where fv
∆
= min( f1, f2, , fn) and rv

∆
= ∑

n
j=1 r j.

Proof. Noting that
∥∥∥ ˙̂

θ

∥∥∥2
=
∥∥Pro j

θ̂
(Γτ)

∥∥2 ≤ ‖Γτ‖ 2,

and according to the triangular inequality,
∥∥∥ ˙̂

θ

∥∥∥2
≤

n∑
n
j=1

∥∥Γφ j
∥∥2z2

j . For any positive number of hi, the
inequality

∣∣∣∣∣ n

∑
i=1

zi
∂α(i−1)

∂θ̂

˙̂
θ

∣∣∣∣∣≤ n

∑
i=1

(
hi

∥∥∥∥∂α(i−1)

∂θ̂

∥∥∥∥2

z2
i +

1
4hi

∥∥∥ ˙̂
θ

∥∥∥2
)

results from the expansion of a quadratic equation. By
choosing gi and hi as above and considering the upper bound
of the adaptive parameters in Eqn. (17), we have∣∣∣∣∣ n

∑
i=1

zi
∂α(i−1)

∂θ̂

˙̂
θ

∣∣∣∣∣≤ n

∑
i=1

hi

∥∥∥∥∂α(i−1)

∂θ̂

∥∥∥∥2

z2
i +

n

∑
j=1

gi
∥∥Γφ j

∥∥2z2
j .

Then, V̇n ≤ −∑
n
i=1 fiz2

i +∑
n
i=1 ri, which results in the bound

given by Eqn. (17).

The same result as in [2, 4] holds for the stability of the
parameter adapive mechanism and the tracking performance
of the system. For the sake of completeness, we present the
equivalent theorem to that in [2, 4].

Theorem 1. Given the desired output trajectory yd(t) gen-
erated described in [2], if the control input is designed as in
Eqn. (16), and using the parameter update law given by Eqn.
(7), the following results hold:

(A) All signals are bounded and the output tracking error is
guaranteed to have any desired transient performance.

(B) If the dynamic uncertainties vanish after a finite time,
in the presence of only parametric uncertainties, asymp-
totic output tracking is guaranteed for any control gains.

4 Simulation
The proposed method is applied to the design of an

adaptive robust feedback controller for a voice coil motor
(VCM) which is used in various precision applications. A
well-known use of VCM is as an actuator for the read/write
head of a computer hard disk drive (HDD) [8, 12]. The sys-
tem operates in two modes: “track following” and “track
seeking”. The read/write head must achieve precise posi-
tioning on a desired track in the track following mode or
transition quickly from one track to another in the track seek-
ing mode. Switching control and multi-rate control are often
used to accomplish both tasks [13, 14]. However, the ARC
provides an approach a single unifying control strategy for
this application since it has shown promising results for each
single-stage and dual-stage hard disk servo systems [11, 15].

The model given for the VCM actuator consists of non-
linear coefficients of viscous and coulomb friction, and the
nonlinear effects of the hysteresis loop [16] [17] [18]. In or-
der to apply linear robust control to this problem, the actuator
must be represented as a linear model with matched uncer-
tainty. This idea is used extensively in many applications,
where linear H∞ or µ− synthesis schemes are used to design
the controller. Examples of linear models for VCM actuators
can be found in [12, 19]. To be able to compare the results
of this paper with existing methods, the model used here is
the one presented in these references. We refer the interested
reader to [12, 19] for the details on how the models were de-
rived experimentally. The transfer function relating the input
voltage Uv to the tip displacement Yv is given by:

Gv (S) =
6

∑
i=0

Ai

S2 +2ξiωiS+ω2
i



Table 1. Poles and Zeros of the nominal system identified for the
VCM

Poles Zeros

(−0.0230± j0.0896)×104 (−0.0076± j0.1317)×104

(−0.0089± j0.1295)×104 (−0.0214± j0.1333)×104

(−0.0124± j0.1401)×104 (−0.0898± j1.9927)×104

(−0.0915± j1.8589)×104 (−0.0770± j3.5620)×104

(−0.0729± j3.1183)×104 (2.4248± j7.3828)×104

(−0.0747± j6.6933)×104 2.5886×104 −5.5608×104

where for each mode i, Ai is the modal constant, ξi is the
damping ratio, and ωi is the natural frequency.

The nominal model extracted from the system identifi-
cation data is order 12 with relative degree of 2. A VCM is
intrinsically a minimum phase system. However, when the
sensor and actuator are none-collocated the flexibility of the
arm contributes a limiting non-minimum phase zero into the
overall transfer function [7] [8]. These non-minimum phase
zeros become the unstable internal modes of the system dur-
ing the backstepping procedure, and destabilize the observer,
the controller, and consequently the whole closed-loop sys-
tem. The strategy then is to reduce the order of the nominal
model so such undesirable high frequency characteristics of
the model is lumped with other uncertainties of the system
and rejected by the robust part of the ARC.

4.1 Model Order Reduction
The implementation of a dynamic backstepping con-

troller for a high order system requires high computational
cost. As such, it makes sense to reduce the order of the model
of the system. In general, a high order system model can be
replaced by lower order approximation without a noticeable
difference in the model resolution. To achieve this model
reduction, we note that a dynamic component of a linear sys-
tem corresponding to a low value of the joint observability
and controllability Gramians can be safely eliminated from
the overall dynamic equation with minimum effect on the
input-output behavior of the model [20]. Table 2 shows the
joint observability and controllability Gramians of the bal-
anced realization of the nominal model of the VCM. Table 2
shows two groups of modes: modes 1-6 and 7-12 for which
the joint Gramians are respectively greater than and less than
one. Further, the Gramians of modes 5 and 6 are less than
one third of the Gramians of the mode 4. Thus, we con-
clude that the dynamic behavior of the nominal VCM model
is dominated by first four modes with greatest Gramians.

The Bode plot of the high order nominal system and the
reduced model is presented in Fig. 2. The reduced model is
of the 4th order and is obtained using a Hankel Norm Order
Reduction. The reduced order system has the relative degree
of one, which means the conventional ARC design procedure
would be made up of one step. As such, we expect consider-
able performance improvement when the proposed dynamic
adaptive robust backstepping method is applied.

Table 2. Joint observability and controllability Gramians of the nom-
inal model of VCM

Modes Grammians Modes Grammians

1 123.74 7 0.57

2 73.96 8 0.56

3 12.55 9 0.33

4 10.77 10 0.33

5 3.74 11 0.25

6 3.31 12 0.23

Table 3. Poles and Zeros of the reduced nominal model

Poles Zeros

(−0.0254± j0.0908)×104 −5.1010×104

(−0.0086± j0.1481)×104 (−0.0129± j0.9083)×104

Fig. 2. The frequency response estimates of VCM system given by
Eqn. (18) including Voltage-to-Current converter (dotted), high order
nominal model (solid), and the reduced model (dashed). The figure
was produced using data provided by [12,19].

4.2 Control Design
The reference trajectory is generated using the structural

vibration minimized acceleration trajectory (SMART) pro-
cedure described in [21]. The idea is to solve the optimal

trajectory planing problem with J =
∫ t f

t0

[
duSMART

dt

]2
dt as the

cost function for a double integrator plant. The solution to
this problem can be analytically obtained, with the optimal
reference trajectory given by:

yre f ,SMART (t) =
(

6y f −3v f t f +
a f

2
t2

f

)( t
t f

)5

+
(
−15y f +7v f t f −a f t2

f
)( t

t f

)4

+
(

10y f −4v f t f +
a f

2
t2

f

)( t
t f

)3



Table 4. The parameters of the Dynamic Adaptive Robust Controller designed for the VCM

c1 = 5×103 +10−16‖Γφ1‖
2 d1 = 102, r1 = 10

c2 = 103 +10−17‖Γφ2‖
2 +103

∥∥∥ ∂α1
∂θ̂

∥∥∥2
d2 = 10−3, r2 = 10

εu1 = 10 h1 = 10.‖φ1‖ + εu1

εu2 =
∥∥∥ θ̂(1)

θ̂(5)
− (c1+d1)

θ̂(5)

∥∥∥.εu1 h2 = 10.‖φ2‖ + εu2

Γ = diag([5×102;5×108;1011;1012;103;109;5×1014;1018])

Table 5. The simulation results and performance indices

Performance Index Set 1 Worse Case

eM(µm) 2.41 3.12

L2 [e] (µm) 1.82 2.32

L2 [u] (volt) 24.65 28.39

where t f is the rise time, and v f and a f are the first and sec-
ond derivatives of the reference position trajectory. The de-
signed trajectory is to receive track number 648 with each
track’s width equal to 3.945µm. The track seeking time is 5
msec.

The model simplifications and reductions taken results
in nontrivial model parameter uncertainties and unmodeled
dynamics. If the conventional backstepping scheme is used
to design the ARC, the dynamic uncertainties would have to
be lumped into one ∆ to be dealt with at the first step when
the actual input variable appears in the equations. Such a
controller can not possibly stabilize this system. However,
using the D-ARC, the backstepping can advance into the dy-
namics of the system where the lumped uncertainty branches
out to the various channels of the system. The robust part of
the controller can then reject their effects and stabilize the
system.

To compare our simulation results with existing con-
trollers presented in the literature, the following performance
metrics are used: 1) the average tracking performance in-
dex, L2 [e], 2) the maximum absolute value of the tracking
error, eM , and, 3) the mean value of the control input, L2 [u].
These metrics were chosen to evaluate the performance of
the system in the track seeking and following modes and
the average control input. Table 5 summarizes these per-
formance indicators for a typical and a worse case scenario
among the simulations for the various samples of uncertain
system model.

Figure 4 shows the performance of the controller in a
run for a sample model of the uncertain system. These re-
sults show the smoothness of the control signal and improved
performance of the system for the transient and steady state
behaviors. Figure 5 shows how the model parameters adapt
over time. Parameter adaptation enables the system to reduce
model uncertainty resulting in a accurate system model and
more precise tracking performance with much less control
effort.

The main source of external disturbances to the head
positioning servo system is the rotation of the spindle mo-
tor. Other significant disturbances include vibration shocks,
mechanical disturbances like disk fluttering and slider vi-
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Fig. 3. Tracking Performance of VCM controlled with first order Dy-
namic ARC

bration, and electrical noise. The disturbances of the HDD
servo design problem are lumped together as an output
disturbance and is known as runouts [22]. The distur-
bance rejection capability of the proposed controller is tested
by injecting a simulated runout signal given by w(t) =
0.5 + 0.1cos(110πt) + 0.05sin(220πt) + 0.02sin(440πt) +
0.01sin(880πt) µm. The signal was applied at t = 0.01 s
after the output has reached steady state. Figure 4b shows
the controller rejecting the runout in less than 5 ms. The os-
cillations are due to the nature of the sliding mode control.
While these oscillations are higher frequency than previous
proposed methods, they have significantly less energy and
would most likely be damped out by the rigidity of the head
and should not dislocate the head from the target track.

5 Conclusion
We presented an alternative dynamic backstepping algo-

rithm to synthesize a dynamic adaptive robust controller (D-
ARC). The proposed method addresses the inherent weak-
ness in the way uncertainties are modeled in the conven-
tional ARC backstepping approach to improve the stability
and performance of the system. Simulations for a VCM ac-
tuator shows that the proposed method is more effective than
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a static control strategy since the DARC signal is smoother
and results in a significantly improved the transient perfor-
mance of the system.

In general, one would expect a high precision and agile
system such as the VCM to exhibit high frequency oscilla-
tions regardless of how smooth the switching function is in
the control input. However, there is no sign of oscillations in

either the control signal or the tracking error of the control
system suggesting that these high frequencies are filtered out
since the procedure accounts for the dynamics of the control
effort as seen in Fig. 3. How to further shape the dynamics
of the control input is a direction for future work. Figure 5
show better estimate of the model parameters leads to im-
proved system performance.

We note that the model order reduction of the VCM re-
sulted in a fourth order system. This suggests the the non-
minimum phase dynamics of the system was transferred into
the parts of the model that describes the uncertainties of the
system. In [23], zero placement was performed before the
ARC was designed using an equivalent minimum-phase sys-
tem. Using similar performance metrics to compare the re-
sults of our approach with those in [23] (see Table III in [23])
suggests that our method significantly improves the transient
performance of the system. In [24], an optimal nonlinear
gain tuning method was applied to the design of a composite
nonlinear feedback controller for a VCM in an HDD servo
system. The method achieved track seeking and track fol-
lowing errors of±20µm which is almost ten times worst than
our results. A more recent paper introduced an enhancement
to the adaptive robust controller design [25]. In [25], a µ-
synthesis robust feedback controller was used to deal with
the unstructured uncertainty of the system and an adaptive
feedforward compensation was used to estimate the uncer-
tain parameters of the model. While the strategy showed
promising steady state performance, the strategy does little
to ameliorate the system’s transient response since the tran-
sient response is mostly impacted by the unstructured uncer-
tainties. As such, the proposed DARC strategy outperforms
the mentioned existing approaches.
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