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Abstract We consider the dynamic assignment and reassignment of a homoge-
neous robot ensemble to multiple spatially located tasks with deterministic or near-
deterministic task execution times. Similar to Halasz et al (2007); Berman et al
(2008), we consider the development of agent-level, i.e., microscopic, stochastic
control policies through the analysis of an appropriate macroscopic analytical model
that describes the dynamics of the ensemble. Specifically, we present an approach
to better approximate the effects of deterministic microscopic time delays at the
macroscopic level based on Padé approximants. We present, analyze, and compare
the frequency response of our approach to the one presented by Berman et al (2008)
using different agent-based simulations.

1 Introduction

We consider the synthesis of agent-level stochastic control policies to allocate a ho-
mogeneous ensemble of robots to a collection of tasks through the analysis of an
appropriate ensemble model. These tasks may be spatially distributed at v different
locales and/or have to be executed following specific precedence constraints. This
problem is relevant to various applications including the scheduling of automated
transportation systems, surveillance of multiple locations for large scale environ-
mental monitoring, or providing aerial coverage for various ground units. In all these
applications, the ensemble must have the ability to distribute themselves among
the various tasks/locations and autonomously redistribute to ensure task completion
which may be affected by robot failures or changes in the environment.
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This is similar to the task/resource allocation problem where the objective is to
determine the optimal assignment of robots to tasks. In the multi-robot domain,
existing methods for the solution of these combinatorial optimization problems of-
ten reduce to market-based approaches (Lin and Zheng, 2005; Guerrero and Oliver,
2003; Jones et al, 2006) where robots must execute complex bidding schemes to
determine the appropriate allocation based on the various perceived costs and util-
ities. While market-based approaches have gained much success in various multi-
robot applications (Dias, 2004; Vail and Veloso, 2003; Gerkey and Mataric, 2002;
Jones et al, 2007) and can be further improved when learning is incorporated (Dahl
et al, 2006), these methods often scale poorly in terms of team size and number of
tasks (Dias et al, 2006; Golfarelli et al, 1997). Furthermore, in applications such as
mining and search and rescue, where inter-agent wireless communication may be
unreliable or non-existent, it is often difficult to devise reliable strategies to ensure
timely communication of the various local costs and utilities required by existing
allocation approaches.

Other recent task allocation strategies include the work by Shen and Salemi
(2002) where the allocation problem is formulated as a Distributed Constraint Sat-
isfaction Problem. This approach requires the explicit modeling of tasks, their re-
quirements, and robot capabilities which makes implementation for large popula-
tions difficult.

More recently, task allocation strategies have been devised by modeling the dy-
namics of the ensemble distribution across various tasks. This is achieved by de-
veloping an appropriate continuous model to describe the ensemble dynamics. The
approach by Milutinovic and Lima (2006) maximizes robot occupation at a desired
position using a centralized optimal control policy where the ensemble distribu-
tion is modeled using a partial differential equation. Other similar efforts include
the work by Martinoli et al (2004) and Lerman et al (2006) where the continuous
models are obtained by defining individual robot controllers and averaging their per-
formance. These models are then used to describe the performance of the swarm in
a collaborative stick-pulling task (Martinoli et al, 2004) and in an adaptive multi-
robot foraging task (Lerman et al, 2006). The foraging task in (Lerman et al, 2006)
is modeled as a stochastic process that does not involve explicit communication or
global knowledge; however, the only way to control robot task reallocation is to
modify the task distribution in the environment.

The dynamic distribution of a team of robots across multiple sites without the
use of explicit inter-agent wireless communication was achieved by Halasz et al
(2007); Hsieh et al (2008) through the use of the ensemble model to synthesize
stochastic control policies for individual robots. In these works, the behavior of
each robot is represented by a probabilistic finite state machine. Robots transition
from one state to another based on a set of predefined transition rates. The allocation
and re-allocation of the team is achieved by designing the transition rates to ensure
the desired allocation across the various sites. Similar to Martinoli et al (2004) and
Lerman et al (2006), these work employs a multi-level representation of the ensem-
ble activity where the macroscopic analytical model is used to determine the set
of microscopic, or agent-level, transition rates that results in the desired ensemble



Stochastic Deployment Policies with Time Delays 3

performance. These results where then extended to account for inter-task navigation
delays that are often stochastic in nature by Berman et al (2008).

In all these examples, the macroscopic continuous models are obtained by map-
ping the multi-agent robotic system to an equivalent chemical reaction network and
then obtaining a set of rate equations to describe the birth-death process of vari-
ous chemical species. In this work, we build on the results by Halasz et al (2007);
Hsieh et al (2008); Berman et al (2008) and present an approach to incorporate the
effects of deterministic agent-level time delays into the macroscopic analytical mod-
els. Different from Berman et al (2008), we analyze the effects of the deterministic
time delays on the behavior of the macroscopic models in the frequency domain and
show how these time delays can be better approximated at the macroscopic level us-
ing Padé approximants rather than an equivalent expanded linear system. We show
that the Padé approximants have the ability to account for higher-order effects re-
sulting in more accurate prediction of the mean behavior of the ensemble in the
frequency domain. This is important since the top-down design paradigm rely on
these macroscopic models in the optimization of the microscopic transition rates for
the individual robots.

This paper is organized as follows: We formulate the time-delayed assignment
problem in Section 2 and present our methodology in Section 3. We summarize the
approach described by Berman et al (2008) in Section 4 and compare the two models
in simulation in Section 5. We discuss our findings in Section 6 and conclude with
some directions for future work in Section 7.

2 Problem Statement

2.1 Definitions

We consider the distribution of N robots among M spatially distributed tasks similar
to Berman et al (2008) and model the precedence constraints between the M tasks
via a directed graph, G = (V ,E ), where the set of vertices, V , represents tasks
{1, . . . ,M} and the set of directed edges, E , the set of precedence constraints. We say
two nodes i, j ∈{1, . . . ,M} are adjacent, (i, j), if there exists a precedence constraint
between task i and j, and we represent this relation by the ordered pair, (i, j) ∈ V ×
V if i precedes j with the set E = {(i, j) ∈ V ×V }. We begin with the assumption
that the graph G is strongly connected, i.e. a path exists for any i, j ∈ V .

We define τi as the amount of time it takes a robot to execute task i and assume
once a robot commits to a task, it must complete the task. To model the robots
switching from one task to another, we assign every edge in E constant transition
rates, ki j > 0, where ki j defines the transition probability per unit time for any robot
previously executing task i to arrive at task j. In general, the transition rate from
i to j does not equal the transition rate form j to i, ki j ∕= k ji. The individual robot
controller is modeled using a finite state machine where each controller state is
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associated with a specific task controller. Robots transition from one controller state
(or task) to another based on the time required for each task, τi, and the transition
rates, ki j. In this work, we assume that every robot has the set of task controllers,
complete knowledge of the G , as well as all the transition rates ki j. The individual
robot controller and the associated ensemble model are shown in Fig. 1.

Task 1 Task 2

Task 3Task 4

Completed Task 4 Completed Task 2

Completed Task 3

Completed Task 1

(a) Robot Controller

x1

∆ t=τ1

x2

∆ t=τ2

x3

∆ t=τ3

x4

∆ t=τ4

k41 k23

k34

k12

(b) Ensemble Model

Fig. 1 (a) The robot controller. The robot changes controller states dependent on guard conditions.
(b) The ensemble model. Here xi denotes the population fraction executing task i. τi denotes the
time to execute task i. On average, robots transition from finishing task i to starting task j with the
stochastic transition rates ki j .

We denote the actual number of robots executing task i ∈ {1, . . . ,M} at time t
by ni(t) and the desired number of robots for task i by n̄i which is specified by the
user. We define the population fraction executing each task at time t as xi(t) where
xi(t) = ni(t)/N. Then the system state vector is given by x = [x1, . . . ,xM]T . For some
initial distribution of the robots given by {ni}(t0), i = 1, ...,M, we denote the desired
distribution of the ensemble as a set of population fractions for each task given by

x̄i =
n̄i

N
.

The specification in terms of fractions rather than absolute robot numbers is cho-
sen such that a team size invariant formulation can be achieved. Such a framework
is practical for scaling purposes as well as in situations where losses of robots to
attrition and breakdown are common. Our objective is to deploy a team of robots
to achieve the desired distribution among the various tasks, given by the x̄, starting
from an initial distribution, x(t0), with no inter-agent wireless communication.

In this work, we leverage on classical frequency-domain analysis of linear sys-
tems. Thus, given a real-valued function f (t) for all real numbers t ≥ 0, we denote
the Laplace transform of f (t) as F(s) = L [ f (t)]. Similarly, we denote the inverse
Laplace transform of a function F(s) as f (t) = L −1[F(s)].
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2.2 Linear and Time-Delayed Models

We consider the linear and delayed differential models first presented by Halasz
et al (2007) and later refined by Berman et al (2008). We briefly summarize the two
models in this section.

In the absence of the task execution times τi’s, the individual robot behaviors can
be described by a continuous-time Markov process in the limit of large N. As such,
the time evolution of the population fraction executing task i is given by

dxi(t)
dt

= ∑
( j,i)∈E

k jix j(t)− ∑
(i, j)∈E

ki jxi(t), (1)

with the rate of change of the population fractions across all M tasks given by

dx
dt

= Kx (2)

where Ki j = k ji for i ∕= j and Kii = −∑(i, j)∈E ki j . We note that the columns of K
sum to 0 and since the number of agents is conserved, the system is subject to the
conservation constraint

M

∑
i=1

xi(t) = 1 . (3)

The system (2) describes the average rates of change of the population fractions
executing each task and are referred as the reaction rate equations (RREs). From this
model, one can design the steady-state distribution of the team across the various
tasks, i.e., x̄, by appropriately selecting the individual transition rates (Halasz et al,
2007). The choice of x̄ can be selected to satisfy some minimal average task com-
pletion rate for the ensemble. Halasz et al (2007); Hsieh et al (2008) showed that for
strongly connected graphs, the system (1) is always stable regardless of the choice
of K. As such, given x̄ and the corresponding K, the ensemble will automatically
distribute itself accordingly without explicit inter-agent wireless communication.

The linear model given by (1) assumes that robots transition from one task to an-
other instantaneously. However, in practice, once a robot commits to task, there is a
delay between finishing its current task and beginning its next one. The linear model
can be extended to take into consideration the delayed transitions by converting (1)
into a delayed differential equation.

dxi(t)
dt

= ∑
( j,i)∈E

k jix j(t− τ j)− ∑
(i, j)∈E

ki jxi(t), (4)

For the system with near deterministic task-times, τi for all i = 1, . . . ,M, we claim
this is a more natural description of the robotic task allocation problem. When the
tasks are spatially distributed within the workspace, these transition rates can repre-
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sent the uncertainty in switching between tasks such as navigation delays between
tasks due to concerns such as traffic congestion and collision avoidance maneuvers.

Both (1) and (4) result in robots switching between states at equilibrium. This is
because these models force a trade-off between maximizing the transition rates for
fast equilibration and achieving long-term efficiency during equilibrium.

Additionally, both (1) and (4), are macroscopic models of the ensemble activ-
ity. The desired distribution of the ensemble, x̄, across the various M tasks can be
achieved through the selection of the individual transition rates, ki j, (Halasz et al,
2007). Hsieh et al (2008) used (1) to determine the set of individual robot transition
rates that result in fast convergence and minimum steady-state transitions. Berman
et al (2008) employed an expanded linear model similar to (1) to approximate the
model given by (4) to account for stochastic time delays that may arise when robots
navigate between locations.

In this work, we use the formulation given by (4) and apply Padé approximants
for the deterministic time delays in the frequency domain. We show how such an
approach more accurately, in terms of the frequency response, and efficiently, in
terms of the polynomial degree, models the steady-state oscillations observed in
the underlying multi-agent robotic system when delays are deterministic or near
deterministic.

3 Methodology

We begin by applying the Laplace Transform to the system given by (4) to obtain

sXi =− ∑
(i, j)∈E

ki jXi + ∑
( j,i)∈E

k jie−sτ j X j for i = 1, . . . ,M. (5)

In general, the Laplace transform converts a differential equation in the time domain
into an algebraic equation in the frequency domain where the resulting equations
are purely sums of polynomials of s, thus simplifying the analysis. However, the
time delay introduces an exponential term which makes the rate expression tran-
scendental. To retain the algebraic structure, a common approach is to apply a Padé
approximation of the exponential term in the frequency domain resulting from the
time delay (Silva et al, 2004).

A Padé approximation is obtained by approximating the function as a rational
function which is a fraction of two polynomials. In general, a Padé approximant of
order (q,r) for some function f (s) is the rational function of the form

R(s) =
α0 +α1s+α2s2 + . . .+αqsq

β0 +β1s+β2s2 + . . .+βrsr (6)

that has a Maclaurin expansion that agrees with f (s) up to its f (q+r)(s). In the case
of modeling the complex exponential time delay, the Padé approximation has the
simpler form,
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R(s) =
1−α1s+ . . .+(−1)qαqsq

1+α1s+ . . .+αqsq =
q

∏
i=1

1− pis
1+ pis

(7)

Note that the poles and zeros of the (q,q) Padé approximation are equal with
opposite sign. This maintains the unity gain element of the systems.

Applying the above approximation to (5), we obtain

Xi =
1

s+∑(i, j)∈E ki j
∑

(i, j)∈E

q

∏
l=1

1− pls
1+ pls

X j.

To demonstrate the effects of such an approximation in the time domain, consider
a 1st order Padé approximation and τi = τ for all i = 1, . . . ,M. Taking the inverse
Laplace transform of the 1st order Padé approximated system, we obtain

ẍi +(
2
τ
+ ∑

( j,i)∈E
ki j)ẋi +

2
τ

∑
( j,i)∈E

ki jxi =
2
τ

∑
(i, j)∈E

k jix j− ∑
( j,i)∈E

k jiẋ j (8)

for all i = 1, . . . ,M. To express the above equations in state-space form, let zi = xi
and z2i = ẋi for all i = 1, . . . ,M. This results in the following system of equations

ż2i−1 = z2i,

ż2i =−(ki +
2
τ
) z2i−

2
τ

z2i−1 + ∑
( j,i)∈E

2
τ

k ji z2 j−1− ∑
( j,i)∈E

k ji z2 j.

The above equations is akin to a second-order version of (1) and can be rewritten
in matrix form as

ż =
[

0 I
2
τ

K F− 2
τ

I

]
z

where [F ]i j =−k ji for i ∕= j and [F ]ii =−∑ j ki j. Unlike, K, the columns of F do not
sum to 0.

Our main concern is to extend the RREs to provide a more accurate description
of the steady-state oscillations experienced by the underlying robotic system. While
it is possible to formulate the ensemble assignment problem in terms of the Chemi-
cal Master Equation (CME), the RRE framework provides a more computationally
efficient approach for two reasons. First, the dimension of the system state space
in the RRE formulation is equal to the number of tasks as compared to the CME
formulation where the dimension depends on both the number of robots and tasks.
Second, approximations for deterministic time delays quickly become intractable
within the CME formulation due to the high number of additional states required to
adequately model the delays. We discuss this in the context the of model proposed
by Berman et al (2008) in the following section. Finally, while the CME formulation
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describes both the expected value and the variance of the population density func-
tion over time, the steady-state oscillation of the underlying system can be difficult
to discern. The ability to predict the frequency of oscillation can inform the design
of agent-level adaptation strategies especially in situations where the oscillations
degrade the overall performance of the ensemble.

4 The Multi-Pole Model

Berman et al (2008) considered the dynamic distribution of N robots to M physically
distinct locales. In this framework, the time delays in (4) were assumed to arise from
the time required to navigate from a site (or task) to another. Rather than model
the navigation time as a deterministic variable, Berman et al. observed that such
navigation delays can be more accurately modeled as random variables rather than
deterministic delays. As such, the model proposed by Berman et al (2008) only
considered the effects of stochastic agent-level time delays. We briefly summarize
the model in this section and refer to it as the Multi-Pole model.

We begin with the assumption that every transition time, τi, is drawn from an
Erlang distribution with mean and variance given by τi and Var(τi). The Erlang
distribution is the sum of k independent identically exponentially distributed random
variables. The differential delayed system given by (4) can be transformed into an
equivalent linear ordinary differential equation of the form (1) by representing each
edge in G as a directed path composed of a finite set of “dummy states”, represented
by extra vertices. The transitions between states are governed by exponential wait
times and therefore the transition time through a set of dummy transitions becomes
an Erlang distributed waiting time. This approach is similar to the linear chain trick
described by MacDonald (1978).

The approach is shown pictorially in Fig. 2(b) for the two state toy example
shown in Fig. 2(a). In general, the mean and variance of the Erlang distribution is a
function of both the number of “dummy states” associated with each edge in E and
the associated transition rates, λi j, given by

E(τ)Erl =
Di j
λi j

, Var(τ)Erl =
Di j

λ 2
i j
.

The parameters can be adjusted for each edge to control the variance and mean
of the associates transition time, Di j = τ2

i /Var(τi) and λi j = Di j/τi respectively. For
the toy example shown in Fig. 2(a), the resulting expanded linear model is given by



Stochastic Deployment Policies with Time Delays 9

ẋi = ∑
(i, j)∈E

λ jiy
(D ji)
ji − ∑

(i, j)∈E
ki jxi,

ẏ(1)i j = ki jxi−λi jy
(1)
i j , (9)

ẏ(m)
i j = λi j

(
y(m−1)

i j − y(m)
i j

)
,

for m = 2, . . . ,Di j and y(m)
i j denotes the fraction of the population in dummy “state”

m associated with the edge (i, j) ∈ E . This results in the linear system given by
[ẋT ẏT ]T = Kequiv[ẋT ẏT ]T similar to (1).

Applying the Laplace transform to the typical rate equations shown in Fig. 2(a)
result in

ẏ(1)12 = λ12x1−λ12y(1)12
L−→ sY (1)

12 = λ12x1−λ12Y (1)
12

...
...

ẏ(i)12 = λ12y(i−1)
12 −λ12y(i)12

L−→ sY (1)
12 = λ12Y (i−1)

12 −λ12Y (i)
12

...
...

ẋ2 = λi j(y
(m)
12 )

L−→ sX2 = λi j(y
(m)
12 )

...

sX2 =
(

λ12
s+λ12

)m
X1

We note that the addition of extra “dummy states” is equivalent to adding more
real poles to the system in the frequency domain. By adding more poles, the approx-
imation begins to look like another typical approximation of the exponential,

e−τs = lim
n→∞

(
1+ sτ

n

)−n ∼

(
1

1+ s
mλ12

)m

. (10)

The location of these poles are dependent on the desired mean and variance of
the transition time. While the additional poles result in a sparse matrix Kequiv, the
amount of poles needed to approximate τi as Var(τi)→ 0 is very large because
of the slow convergence rate of Var(τi j) ∼ 1/Di j. This is analogous to the slow
convergence rate of equation (10). To give an example, a transition that with half
the variance and the same mean requires a doubling of the amount of poles, or
equivalently, dummy sites. The approximation of the delays as a product of poles
can attenuate the high frequencies in the system resulting in poor modeling of the
transient response and possibly leading to instability.

In practice, a time delay in the input signal does not affect the gain of the fre-
quency response. Rather, the time delay should simply retard the phase of the re-
sponse signal. In the frequency domain, the time delay is modeled as an exponential
variable as shown in Section 3. This is equivalent to an exponential delay in the
phase response of the output signal. As the frequency increases, the system delays
the output signal by more and more periods. The effects of the deterministic micro-
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(a)

Fig. 2 A toy example with two states or tasks. (a) Differential delayed model. (b) Expanded linear
model or Multi-Pole model. Here the y(k)i j denotes the “dummy states”.

scopic time delays can potentially be better approximated at the macroscopic level
by employing a Padé approximant for the exponential term in the frequency domain
since it limits the effects on the gain of the response. This is because as the Padé
approximant, i.e., equation (7), grows in order, it adds matching pole-zero pairs such
that each extra pole-zero increases the phase shift by π while effectively canceling
the loss in gain.

To illustrate this, consider the simple input-output system given by x(t) = u(t−
τ). Fig. 3 shows the step responses for the pure delayed system, a Multi-Pole ap-
proximated system, and a Padé approximated system. We note that the frequency
content of the delayed response depends on the order of the approximation, i.e.,
number of poles added to represent each delay similar to (9) or the order of the Padé
approximant. For this example, we employed a 64th order Multi-Pole delay and a
4th order Padé approximant. The orders of approximation were selected to display
qualitatively similar responses in the rise time step dynamics. While the Multi-Pole
response may look like a better approximation of delayed step response, the number
of poles required to match the Padé approximated step response grows exponentially
compared to the Padé order.

We note that the output value of the Padé approximation can cause the modeled
population fraction to reach negative values, whereas the actual robotic population
fraction cannot. This is a consequence of modeling the time delay with a finite order
rational polynomial and can be addressed via saturation functions to limit the output
variables to the appropriate range, x(t) ∈ [0,1].

To further illustrate the differences between the Padé and the Multi-Pole sys-
tems, consider their frequency responses shown in Fig. 4. While both systems have
the same break frequency, the 4th order Padé response closely resembles the fre-
quency response of the actual time-delayed system. We note that location of the
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Fig. 3 Step responses for the system x(t) = u(t− τ) where τ = 10 seconds. The response of the
Multi-Pole model, the Padé model, and of the actual system is shown.

break frequency is a function of the transition rates. Depending on the application,
the periodicity of various cycles in G , or loop frequencies, can be designed by ap-
propriately selecting the transition rates.

In this work, we employ a 4th order Padé approximations for e−sτ j . We evalu-
ate our Padé approximated model and compare it to the Multi-Pole model in the
following section using different agent-based simulations.

Fig. 4 Magnitude portion of the frequency response for the 4th and 64th order Padé response and
the 4th order Multi-Pole response compared to the system response given by (4). The transition
rates and delays are k12 = 1 sec−1, k21 = 1 sec−1, τ1 = 1 sec, τ2 = 7 sec. These rates result in a
loop time of 10 seconds.
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5 Simulation Results

For ease of comparison, we consider the allocation problem presented by Hsieh et al
(2008); Berman et al (2008). The objective of this work is to determine whether the
Padé approximated macroscopic continuous (macro-continuous) model can provide
an accurate description of the average ensemble behavior for the underlying micro-
scopic system subject to deterministic time delays. These high level representations
provide a lower dimensional description of the underlying multi-agent robotic sys-
tem and can be more efficient when used to optimize the various system parameters
to improve the performance of the robot ensemble (Hsieh et al, 2008; Berman et al,
2009). As such, the accuracy of the macro-continuous models will not only deter-
mine our ability to predict ensemble behavior but also affect our ability to optimize
ensemble performance.

Similar to existing work, we employ a multi-level simulation methodology that
represents three separate levels of abstraction of our deployment strategies. At the
top-most level are the macro-continuous reaction rate equations (RREs) that model
the evolution of the mean robot populations executing different tasks. At the low-
est level, is the full model of the multi-agent robotic system, what we refer to as
the microscopic discrete (micro-discrete) model. At this level, we conduct a full
physics simulation of N robots where each robot is programmed to execute the
assigned tasks. We also perform simulations at the middle level, or macroscopic
discrete level (macro-discrete), using a simulation procedure that is mathematically
equivalent to an agent-based simulation (Gillespie, 1976, 2007). One can view the
macro-discrete representation as a stochastic formulation of the macro-continuous
models. We summarize our simulation methodologies and present our results in the
following sections.

5.1 Simulation Methodology

We consider the deployment of an ensemble of N robots moving in the plane to
M distinct locations/sites. In this work, we consider the case where time delays
are deterministic and arise because each robot must spend τi seconds executing the
task at site i as compared to stochastic delays due to navigation between sites as
described by Berman et al (2008). At the macro-continuous level, simulations are
performed by numerically integrating the continuous-time differential equations.

5.1.1 Micro-Discrete Simulation

For our micro-discrete simulations, we developed an agent-based simulation for an
ensemble of 10 SRV-1 robots in USARSim (USARSim, 2007). USARSim is a high
fidelity simulator based on the Karma physics engine in the Unreal Tournament
game. The SRV-1s are differential-drive robots equipped with an embedded pro-
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cessor, color camera, and 802.11 wireless capability. The team is tasked to surveil
two buildings each located in a different location. Each building is represented by
a rectangular block in the workspace. We assume the robots have a map of the en-
vironment and navigate from building to building via simple potential functions.
Initially, the robots are assigned to either building. Once the robot reaches its tar-
geted building, it circles the building in a clockwise direction. The task execution
time, τi, was chosen to reflect the amount of time it takes the robot to circle the
building twice. After accomplishing its task, the robot moves onto the next build-
ing to surveil. Robots navigate from one building to another using a potential field
controller. Once they have completed the surveillance task at each site. There is
variability in the amount of time it takes a robot to travel between the two sites
depending on the amount of traffic which may affect the number of collision avoid-
ance maneuvers each robot must execute. Collision avoidance among the robots is
achieved through a combination of gyroscopic forces and potential functions (Chang
et al, 2003; Hsieh et al, 2007). For these experiments, the transition rates were cho-
sen so the team would evenly distribute themselves among the two buildings. The
transition rates and initial conditions for the simulation are summarized in Table 1.

State
Initial

Condition
Transition

Rate
τ

Delay State Description

x1 0 - τ1 = 50 Robots surveilling building 1
x2 0 - τ2 = 50 Robots surveilling building 2
y1 5 k1,2 =

1
17.3 - Robots transitioning from 1 to 2

y2 5 k2,1 =
1

18.2 - Robots transitioning from 1 to 2

Table 1 System parameter values for the micro-discrete simulations.

5.1.2 Macro-discrete Simulation

In the absence of time delays, an exact stochastic simulation algorithm can be used
to simulate the trajectory of the state variables following Gillespies Direct Method
(Gillespie, 1976). This is achieved by first converting the continuous population
model into a set of “reactions” that describe individual robot behavior transitions.
In a manner analogous to a system of chemical reactions, each transition occurs at
a rate derived from the transition rates. In our simulations, the behaviors are rep-
resented by tasks/sites and the transition rates are chosen to achieve a uniform dis-
tribution across the tasks. The next behavior transition is selected from a uniform
distribution over the relevant propensities, and the time interval until the next occur-
rence, δ tk+1, is computed from an exponential distribution with the total propensity
as its parameter. The time is advanced by δ tk+1 and the transition is simulated by
decreasing the number of robots in one site and incrementing the number in the sec-
ond. For a detailed description on how to compute the transition propensities using
these rates, we refer the reader to the work by Berman et al (2006).
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To simulate the Padé approximated macro-discrete system given by (8), we used
the method presented by Bratsun et al (2005) which extends the Direct Method to
work with an inherent time delay. Since, the mean and variance of an exponential
wait time are both given by the inverse of the arrival rate, λ , long wait times will
invariably result in large variances. As a consequence, Bratsun et al (2005) propose
the delay times to be drawn from a shifted exponential distribution with expected
value given by λ−1 + τ . This ensures that the wait times are still exponentially dis-
tributed while providing the ability to affect the variance of the distribution without
significantly altering the structure Gillespie’s Direct Method.

5.2 Results

We begin by comparing the frequency responses of the Padé and Multi-Pole macro-
continuous models with the micro-discrete simulations. We employed 4th order Padé
and Multi-Pole approximations.

We ran 54 micro-discrete simulations in USARSim where each robot was tasked
to survey each building for 50 seconds before switching to the other building. To
obtain the frequency response of the micro-discrete simulations, we logged the pop-
ulation fractions at each site over time and applied the Fast Fourier Transform (FFT)
to these variables for each run. The FFT results were then averaged for 54 runs.
The result is shown in Fig. 5. The micro-discrete system exhibits a maximum gain
at approximately 7.5 mHz. While both the Padé and Multi-Pole macro-continuous
models exhibit peaks at approximately the same frequency, the Padé model shows
larger gain.

Fig. 5 Top: Average of the FFT of the population fraction at building 2 obtained from 54 micro-
discrete simulations. Bottom: Magnitude portion of the Bode plots relating to the number of Robots
at building 2. for the 4th order Padé, 4th order Multi-Pole, and 16th order Multi-Pole macro-
continuous systems.
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In general, it is difficult to directly compare the macroscopic results with the
microscopic results. This is because the FFT of the system states only considers
the outputs of the system. The magnitude portion of the Bode plots, on the other
hand, gives the response of the ratio of the output to input of the system for all
frequencies. In other words, the macroscopic frequency response is based on a unity
gain input at all frequencies. The difference between the two plots is dependent
on the form of the noise input to the system and are related by the shape of the
frequency spectrum of the noise input to the system. Given the same transition rates,
i.e., K in (1), our microscopic simulations result in the same peak frequency as
predicted by the macro-continuous models.

The difference in frequency gain between the Padé and Multi-Pole approxima-
tions are significant, with the 4th order Pade system closely matching the delayed
system dynamics within 0.1% while the 4th order Multi-Pole systems gain was off
by 51%. The effects of this discrepancy are significant. The settling times for the de-
layed system and the Pade system are 547.3 and 545.8 seconds respectively, where
as the settling time for the Multi-Pole system is 164 seconds. A long settling time
implies that oscillations generated by the noise in the system will remain in the sys-
tem. For example, in situations when robots break down, the system will experience
what looks like a noise impulse and as a result the populations at the affected sites
will begin to oscillate. In the agent based simulation, where collision avoidance and
traffic can lead to the clustering of robots, this spurious oscillation can be sustained.

Fig. 6 shows the number of robots at Building 2 for a sample micro-discrete sim-
ulation. The number of robots for each site was initialized at the desired steady-state
levels. As expected, the initial variations in population sizes were random, however,
the population size eventually began to oscillate. The oscillations were partly due
to the changes in traffic patterns en-route to the different sites which affects the
amount of collision maneuvers individual robots must execute. When traffic is high,
it becomes more difficult for the team to quickly re-establish equilibrium.

Fig. 6 Number of robots surveilling Building 2 over time. The number of robots at Building 2 was
initialized at the desired steady-state population.
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Fig. 7 shows a series of snapshots for a typical microscopic simulation. Robots
are either conducting surveillance of a building, represented by the blocks on either
side, or switching from one building to another. Fig. (a) shows the initial positions
of the robots in the workspace, Fig. (f) shows 3 robots transitioning from building 2
to building 1 and Fig. (h) shows a typical equilibrium state.

(a) (b) (c) (d)

(e) (f) (g) (h)

Fig. 7 Snapshots from a typical microscopic simulation. Building 1 and 2 are the right and left
structures respectively.

To show that the steady-state oscillations predicted by the time-delayed models
are independent from team size, we ran macro-discrete simulations using the mod-
ified Direct Method (Bratsun et al, 2005) for ensemble sizes of 10, 200, and 2000
robots using the same transition rates and task execution times. As mentioned previ-
ously, the macro-discrete simulation is mathematically equivalent to an agent-based
simulation but is more computationally efficient when the ensemble size is large.
Fig. 8 shows the FFT of the output of these simulations with the frequency response
of the 4th order Padé macro-continuous model. Regardless of the team size, the sys-
tem exhibits the same peak frequency as predicted by the Padé macro-continuous
model. More interestingly is that the shape of the FFT is consistent across the vari-
ous team sizes.

6 Discussion

Within this framework, the intrinsic noise in the population variables is amplified
by the loop gains associated with the transition rates and task delay times. When the
system has deterministic or near deterministic time delays, the population values can
have high magnitude frequency components. Given the time delays, it is possible to
determine these loop frequencies. While such spurious effects do not produce insta-
bility, the associated oscillations can adversely effect the performance of the system
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Fig. 8 FFT of different macro-discrete simulations for different team sizes and the frequency re-
sponse of the 4th order Padé macro-continuous model. The top plot is the FFT results of a macro
discrete simulation with different number of robots. The output is the frequency content of the
number of robots at building 2 normalized by the total number of robots.

by increasing the amount of time a robot spends switching between tasks. This is
because the spurious frequency components are constantly being renewed based on
the noise content of the underlying system. The implication here is that these os-
cillations can be sustained for much longer time scales than what the non-delayed
macro-continuous simulations can predict. In the presence of other noise sources,
like the variability introduced by collision avoidance or other forms of robot-robot
or robot-environment interactions, these oscillation can be sustained.

The presence of these spurious frequency components in the surveillance appli-
cation creates undesired long term behaviors. The physical meaning of the observed
oscillations in the time domain is that the robots are clustering together, i.e., travel-
ing in packs. Consider the extreme case of a single robot, where the robot always
travels in a “pack”. In this case, the frequency content will be large because there
is no traffic and all states will be unit amplitude square waves. For the single robot
there is no adverse effect of this frequency peaking. However, for the team of robots
traveling together, collision avoidance becomes a significant concern since the local
traffic is always high. If the congestion does not dissipate, then such local traffic con-
cerns will tend the follow the robots as the move from one task to another. This leads
to degraded performance as the average transit time between sites will increase due
to these traffic concerns due to an amplification of the low number intrinsic noise
of the system by the frequency dynamics. If we only considered the steady-state
behavior of the system, one would expect the majority of the N robots to be exe-
cuting their surveillance tasks with only a small fraction of them traveling between
sites. However, the presence of the unwanted frequency components can result in a
significant imbalance between robots at sites and those traveling between them. The
Padé approximated macro-continuous model has the ability to predict the spurious
frequency component that is present in the agent-based simulation.
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The removal of these spurious frequency components at the macroscopic level
can be achieved by incorporating a notch filter of the form

H(s) =
s2 +2ζ1ωN−ω2

N

s2 +2ζ2ωN−ω2
N

with ωN and the ratio of ζ1/ζ2 chosen such that the location and magnitude of the
notch are properly located at the spurious frequency.

While applying control on the macro-continuous model is straight-forward, it is
not clear how such a controller can be mapped to specific modifications of the indi-
vidual robot controllers. In fact, inspection of the closed-loop time domain equations
suggest in order to realize the macroscopic notch controller, the individual robots
must have the ability to estimate the higher order derivatives of the population frac-
tions at both their current sites as well as their adjacent sites. While such a strategy
makes intuitive sense, the straight forward implementation of such a controller can
be prohibitively costly in terms of the amount of information that needs to be com-
municated. Furthermore, it is not clear whether such a controller can be achieved by
the ensemble in a distributed fashion or whether there are other distributed strategies
that will result in the same macroscopic effect. This is a topic of on-going research
for our group.

From our results, we have shown that the Padé approximated macro-continuous
model is better suited for modeling the effects of deterministic time delays on en-
semble performance. As described in Section 4, the Multi-Pole formulation can also
provide an adequate approximation as long as the number of dummy states required
is reasonable. For transitions times where the magnitude of the variance is on the
same order as the mean, the Multi-Pole formulation will model the frequency dy-
namics accurately. However, if we consider an example where the variance is 1 sec2

and the mean is 10 sec, from Section 4, we note that this requires 100 dummy tran-
sitions. From our results, it seems these near deterministic transitions can be more
efficiently modeled by concatenating a single pole dummy transition with the de-
sired variance with a Padé approximation to model the discrete time. This hybrid
approach should give similar results to the Multi-Pole model with a significantly
lower order and is a direction for further investigation.

7 Future Work

We have presented a methodology to more accurately predict the effects of deter-
ministic agent-level time delays on mobile robot ensemble dynamics. Different from
existing approaches, we employ a Padé approximation for the time delays in our
system to retain frequency components that might have been smoothed out in a
purely kinematic macroscopic continuous formulation of the ensemble dynamics.
We showed through our multi-level simulations that our approach provides a macro-
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scopic description of the ensemble that retains the relevant frequency characteristics
of the microscopic system.

An immediate direction for future work is to investigate other approximation
techniques that can further enhance these chemical reaction network derived models
to provide a low parameter description of the physical mobile robot systems. Of
particular interest are techniques that enable us to incorporate more dynamics of the
underlying robotic systems. For near deterministic or small variance time delays,
one possibility is to employ a combination of Padé and Multi-Pole methods to better
capture the microscopic effects. We would also like to extend our results to nonlinear
chemical reaction network based systems. Though the Padé results in the Laplace
frequency domain are linear, the method for constructing a delay out of derivatives
of the input and output will still be applicable. This is of particular interest since
nonlinear chemical reaction networks provide a framework to develop macroscopic
models that describe the dynamics of heterogeneous and interacting mobile robot
ensembles. Lastly, as alluded to in our discussion, we are interested in investigating
various distributed realizations of feedback control strategies obtained through the
analysis of macroscopic models.
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