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Abstract—We present a scalable approach to dynamically
allocating a swarm of homogeneous robots to multiple tasks,
which are to be performed in parallel, following a desired
distribution. We employ a decentralized strategy that requires
no communication among robots. It is based on the development
of a continuous abstraction of the swarm obtained by modeling
population fractions and defining the task allocation problem as
the selection of rates of robot ingress and egress to and from
each task. These rates are used to determine probabilities that
define stochastic control policies for individual robots, which in
turn produce the desired collective behavior. We address the
problem of computing rates to achieve fast redistribution of the
swarm subject to constraint(s) on switching between tasks at
equilibrium. We present several formulations of this optimization
problem that vary in the precedence constraints between tasks
and in their dependence on the initial robot distribution. We
use each formulation to optimize the rates for a scenario with
four tasks and compare the resulting control policies using a
simulation in which 250 robots redistribute themselves among
four buildings to survey the perimeters.

Index Terms—distributed control, Markov processes, optimiza-
tion, stochastic systems, swarm robotics, task allocation

I. INTRODUCTION

ADVANCES in embedded processor, sensor, and actuation
technology are paving the way for the development of

“swarms” of robots numbered in the hundreds or thousands.
We present a strategy for reallocating a swarm of homoge-
neous robots among a set of tasks that are to be performed
in parallel, continuously, and independently of one another.
For instance, each task could be an activity at a physical
site such as building surveillance, environmental monitoring,
construction, or a search-and-rescue operation. The objective
is for the robots to autonomously redistribute as quickly and
efficiently as possible such that the steady-state populations at
the tasks follow a predefined distribution.

This is an instance of the single-task robot, multi-robot
task problem (ST-MR) [1], where the goal is to assign teams
of robots to tasks in a way that maximizes the system’s
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performance. This is known as the coalition formation problem
when applied to software agents. Tractable approaches to this
problem, which is NP-hard, rely on extensive agent cooper-
ation that is not easily implemented in robot systems since
communication can be costly and unreliable and resources are
not transferrable [2]. The algorithm in [3] was adapted to the
multi-robot domain in [4], but robots must compute all possi-
ble coalitions and agree on the best ones, and coalition sizes
are limited. The ST-MR problem has recently been addressed
with market-based techniques, although allocation strategies
for robots have mostly considered the problem of assigning a
single robot to each task [2]. Market-based approaches [5]
require robots to execute complex bidding schemes based
on perceived costs and utilities, and the computation and
communication requirements often scale poorly as the number
of robots and tasks increases.

These algorithms are not suitable for the large-scale systems
that we consider. If tasks are at different sites, communication
between all robots may not be possible due to interference,
obstruction, or power limitations, or it may be too risky, as
in military applications. Also, bandwidth becomes a limiting
factor in communication as population size increases. In light
of these issues, we propose a strategy that does not use
inter-robot communication. We do, however, assume that a
central controller broadcasts information about tasks and task
transitions without dictating the actions of individual robots.

Our strategy should be readily implementable on robots with
limited on-board resources, scalable in the number of robots
and tasks, and robust to changes in the population. These
properties are inherent in decentralized approaches [6]–[8] that
are inspired by the self-organized behavior of social insects
such as ants [9]. In this work, robots switch between simple
behaviors based on environmental stimuli and interactions
with other robots. We adopt this distributed paradigm using
stochastic switching between tasks. We note that the potential-
based algorithm in [10] is also scalable, but it is designed for
tasks that are depleted and does not address the problem of
allocating robots as quickly as possible.

Recent work on decentralized control for task allocation
has focused on abstracting the physical system to an accurate
macroscopic model [11], [12]. Identical robot controllers are
defined with stochastic state transitions, and they are aver-
aged to obtain a set of differential or difference equations.
System performance is studied by running the model, which
is validated through simulations, under many different con-
ditions. We use a controller synthesis approach that is less
computationally expensive and gives theoretical guarantees on
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performance. We model the swarm as a set of differential
equations in which the variables are continuous population
fractions at tasks. We then use standard analysis and opti-
mization tools to design the model parameters so that the
swarm macroscopically displays rapid, efficient deployment
to the desired distribution. We use these parameters to define
rates of switching between tasks that can be realized on
individual robots, which collectively display the properties of
the continuous model.

We first used this approach to design ant-inspired behaviors
that cause robots to converge to the better of two sites [13]
or split between two sites in a specified ratio [14]. We
extended our methodology to the distribution of a swarm
among tasks at many sites [15] and introduced quorum-based
stochastic control policies [16]. In the present work, we focus
on optimizing the rates at which robots switch between tasks
for fast convergence to the desired distribution subject to a
constraint(s) on idle transitions at equilibrium. We began this
investigation in [17], in which we accounted for transition
times within the differential equation framework. Here we
present several new optimization methods and compare them
using a four-site surveillance scenario.

II. CONTINUOUS MODELS

A. Definitions and Assumptions

Consider a population of N robots to be allocated among
M tasks. We denote the number of robots performing task
i ∈ {1, . . . ,M} at time t by ni(t), a nonnegative integer,
and the desired number of robots for task i by nd

i , a positive
integer. The population fraction performing task i at time t
is xi(t) = ni(t)/N , and the vector of population fractions
is x(t) = [x1(t), . . . , xM (t)]T . The target distribution is
the set of desired population fractions for each task, xd =
[xd

1 ... xd
M ]T , where xd

i = nd
i /N . A specification in terms of

fractions rather than integers is practical for scaling as well as
for applications in which losses of robots are common.

The precedence constraints between tasks can be modeled
using a directed graph G = (V, E), where V , the set of M
vertices, represents tasks {1, . . . ,M} and E , the set of NE
edges, represents possible transitions between tasks. Tasks
i and j are adjacent, denoted by i ∼ j, if a robot that
is working on task i can switch to task j. We denote this
relation by the ordered pair (i, j) ∈ V × V , with the set
E = {(i, j) ∈ V × V | i ∼ j }. For example, if each task
i is an activity at a physical site i, then G models the site
interconnection topology: V is the set of M sites and each
edge (i, j) represents a one-way route that robots can travel
from i to j. If there are P possible routes from i to j, then
they are represented by distinct edges (i, j)m, m = 1, ..., P .

We require G to be strongly connected, which means that a
directed path exists between any pair of distinct vertices. This
facilitates redistribution by allowing the robots to perform any
task starting from any other task; no task acts as a source or
a sink. We also consider the case of a fully connected graph,
in which every vertex is adjacent to every other vertex. This
allows robots to switch directly from one task to another rather
than working on a sequence of intermediate tasks first.

We consider x(t) to represent the distribution of the state of
a Markov process on G, for which V is the state space and E
is the set of possible transitions. Every edge (i, j) is assigned
a constant positive transition rate kij , the probability per unit
time for one robot at task i to switch to task j. These rates
define stochastic transition rules: the robots are programmed
to switch from task i to j with probability kijδt at each time
step δt. The number of transitions between tasks i and j in
time ∆t has a Poisson distribution with parameter kij∆t. Our
objective is to compute kij that cause the robots to quickly
redistribute among the tasks in order to occupy them in the
population ratios dictated by xd. The use of constant kij is
necessary to abstract the system to a linear continuous model
(Sections II-B and II-C), which is used to design the kij via
optimization techniques (Section III).

We assume that a central controller determines xd, com-
putes the rates kij , and broadcasts the rates to the robots.
The robots have complete knowledge of G and the tasks to
perform; this information can be preprogrammed and updated
via a broadcast if the tasks change. The robots must also be
capable of executing the tasks and transitions. For instance,
if the tasks are at different sites, the robots must be able to
localize themselves in their environment and navigate safely
between sites.

B. Base Model
The swarm can be modeled as a function of the rates kij by

representing it in terms of the continuous quantity x(t). In the
limit N →∞, the physical system of individual robots can be
abstracted to the following linear ordinary differential equation
(ODE) model according to the theoretical justification given
in [18],

ẋi(t) =
∑

∀j|(j,i)∈E

kjixj(t)−
∑

∀j|(i,j)∈E

kijxi(t) , (1)

where i = 1, ...,M . If there are P edges from i to j, each
with rate kij,m, m ∈ {1, ..., P}, then kij =

∑P
m=1 kij,m.

We define the flux from task i to j at time t as kijxi(t),
the fraction of robots per unit time that are leaving i to
switch to j. Hence, model (1) quantifies the rate of change
of population fraction xi(t) as the difference between the
total influx and total outflux of robots at task i. The model
captures this effect in a simple way by representing robots as
switching instantaneously from one task to another, ignoring
the time that robots take to effect transitions. Because the kij

are constant, robots still switch between tasks at equilibrium,
when the net flux through each task is zero. This contributes
to system robustness since the population at each task, which
may be depleted by breakdowns, is constantly replenished. The
persistent switching may also serve a useful function, such as
patrolling or sampling between sites.

Since the number of robots is conserved, system (1) is
subject to the constraint

1T x = 1 . (2)

System (1) can be equivalently written as the linear model

ẋ = −Kx , (3)
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where K ∈ RM×M is a matrix with the properties

KT 1 = 0 , (4)

Kij ≤ 0 ∀(i, j) ∈ E . (5)

These two properties result in the following matrix structure:

Kij =






−kji if i )= j , (j, i) ∈ E ,
0 if i )= j , (j, i) /∈ E ,∑

(i,l)∈E kil if i = j .
(6)

Theorem 1: If the graph G is strongly connected, then
system (3) subject to (2) has a unique, stable equilibrium.

Proof: Since G is strongly connected, the rank of K
is M − 1 [19]. The null space of K, xn, is therefore one-
dimensional. This null space is intersected by the (M − 1)-
dimensional hyperplane described by constraint (2). Thus,
system (3) subject to (2) has a unique equilibrium point, which
we call x̄n = [x̄n

1 ... x̄n
M ]T .

Now consider the matrix T = tI − K, where t > 0 and
I ∈ RM×M is the identity matrix. Choose t large enough
such that T is a nonnegative matrix. Since G is strongly
connected, the matrix −K, and therefore T, is irreducible.
Because T is nonnegative and irreducible, by the Perron-
Frobenius theorem T has a real, positive, simple eigenvalue
λm(T) such that all other eigenvalues of T, λ(T), satisfy
|λ(T)| < λm(T). This eigenvalue also satisfies the inequali-
ties minj

∑M
i=1 Tij ≤ λm(T) ≤ maxj

∑M
i=1 Tij [19]. Since

the columns of K sum to 0, both sides of these inequalities
are t, so λm(T) = t. Note that λ(T) = λ(−K)+ t. Thus, the
eigenvalue of −K corresponding to λm(T) is 0, and all other
eigenvalues of −K satisfy |λ(−K) + t| < t. It follows that
−K has a simple zero eigenvalue and all its other eigenvalues
satisfy Re(λ(−K)) < 0. Therefore, the equilibrium point x̄n

is stable.

Theorem 1 proves that system (3) subject to (2) always
converges to a single equilibrium x̄n, which represents the
steady-state distribution of population fractions among the M
tasks. Hence, we can achieve the target robot distribution xd

from any initial distribution x0 by specifying that x̄n = xd

through the following constraint on K:

Kxd = 0 . (7)

When the kij are chosen such that the corresponding K
matrix satisfies constraint (7), a swarm of robots that use the
kij as stochastic transition rules will redistribute from any
x0 to xd. In practice, this redistribution must take place in a
reasonably short amount of time. Since (3) is a linear system,
the rate of convergence of x to xd is governed by the real
parts of the eigenvalues of K, which are positive homogenous
functions of the kij [20]. Thus, the rate of redistribution can
be made arbitrarily fast by using high kij .

However, in actual robotic systems there is often a substan-
tial cost to using high kij . At equilibrium, the probability that
any robot doing task i will start switching to task j in time
step δt is kijnd

i δt. Thus, raising kij increases the equilibrium
“traffic” of robots transitioning between tasks i and j. This
switching expends power; for instance, if the tasks are at

different locations, the robots must travel between them and
may experience delays due to congestion along the route.

Thus, when choosing the kij , we are faced with a trade-
off between rapid convergence to xd and long-term system
efficiency, i.e. few idle transitions between tasks once xd is
achieved. In light of this tradeoff, we frame our objective as the
design of an optimal transition rate matrix K that maximizes
the convergence rate of system (3) to xd subject to one of
two possible constraints on task transitions at equilibrium. The
first is a limit on the total equilibrium flux of robots switching
between tasks: ∑

(i,j)∈E

kijx
d
i ≤ ctot . (8)

This constraint does not dictate how the transitioning popu-
lation is distributed among edges. An alternative constraint
achieves this with a set of limits on the equilibrium flux
between each pair of adjacent tasks:

kijx
d
i ≤ cij , (i, j) ∈ E . (9)

C. Time-Delayed Model
As mentioned previously, model (3) does not account for

the fact that in reality, the influx of robots to task j from task
i is delayed by the time taken to switch between the tasks,
τij . If we assume a constant transition time τij for each edge
(i, j), this effect can be included by rewriting equation (1) as
a delay differential equation (DDE):

ẋi(t) =
∑

∀j|(j,i)∈E

kjixj(t−τji) −
∑

∀j|(i,j)∈E

kijxi(t) . (10)

where i = 1, ...,M . Due to the finite τij , there will be robots in
the process of switching between tasks; thus,

∑M
i=1 xi(t) < 1

for t > 0. Let nij(t) be the number of robots in transition
from task i to j at time t and yij(t) = nij(t)/N . Then the
conservation equation for this system is:

M∑

i=1

xi(t) +
M∑

i=1

∑

∀j|(i,j)∈E

yij(t) = 1 . (11)

In practice, robots will complete a transition in different
amounts of time, so model (10) can be made more realistic
by defining the τij as random variables, Tij . In the case where
robots effect transitions by traveling between sites, variations
in τij can arise from changes in navigation patterns caused
by collision avoidance, congestion, and localization errors.
For this case, we can estimate a reasonable form for the
probability density of the Tij from an analogous scenario in
which vehicles deliver items along roads to different sites.
Vehicle inter-site travel times have been modeled as following
an Erlang distribution to capture the fact that the times have
positive, minimum possible values; a small probability of
being large due to accidents, breakdowns, and low energy;
and their distributions tend to be skewed toward larger values
[21]. We assume that each Tij follows this distribution with
parameters ωij ∈ Z+ and θij ∈ R+:

g(t;ωij , θij) =
θ

ωij

ij tωij−1

(ωij − 1)!
e−θijt . (12)
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Fig. 1. A labeled edge (i, j) = (1, 2) that consists of (a) the real tasks,
corresponding to model (1), and (b) both real and virtual tasks (for ω12 = 2),
corresponding to model (13).

In practice, the parameters are estimated by fitting empirical
transition time data to density (12).

Under this assumption, the DDE model (10) can be trans-
formed into an equivalent ODE model of the form (1), which
allows us to optimize the rates kij using the methods we
develop for this type of model. We use the fact that Tij

has the same distribution as the sum of ωij independent
random variables, T1, ..., Tωij , with a common distribution
f(t; θij) = θije−θijt [22]. Each of the variables represents
a portion of the transition time between tasks i and j. To
model these portions of the transition, we define a directed
path composed of a sequence of virtual tasks, u = 1, ..., ωij ,
between the real tasks i and j. Assume that robots transition
instantaneously from virtual task u to u + 1, which is task j
when u = ωij , at a constant probability per unit time, θij .
It follows that f(t; θij) is the distribution of the time that a
robot spends doing virtual task u, and so we can define Tu,
u ∈ {1, ..., ωij}, as this task execution time.

We denote the population fraction that is doing virtual task
u along edge (i, j) by y(u)

ij . Then
∑ωij

u=1 y(u)
ij represents yij ,

the fraction of robots in transition from task i to task j. Fig.
1 illustrates how an edge from model (1) is expanded with
two virtual states y(u)

ij . As in Section II-B, the dynamics of
the population fractions at all real and virtual tasks in the
expanded system can be written as a set of linear ODE’s:

ẋi(t) =
∑

j|(j,i)∈E

θjiy
(ωji)
ji (t) −

∑

j|(i,j)∈E

kijxi(t) ,

ẏ(1)
ij (t) = kijxi(t) − θijy

(1)
ij (t) ,

ẏ(m)
ij (t) = θij

(
y(m−1)

ij (t) − y(m)
ij (t)

)
,

m = 2, ..., ωij , (13)

where i = 1, ...,M and (i, j) ∈ E .
We now show that this more realistic model converges to a

designable target distribution from any initial distribution.
Theorem 2: If the graph G is strongly connected, then

system (10) subject to (11) with each τij distributed according
to density (12) has a unique, stable equilibrium.

Proof: We prove this for the equivalent ODE model (13)
subject to (11), where yij =

∑ωij

u=1 y(u)
ij . Let y be the vector

of y(u)
ij , u = 1, ..., ωij , (i, j) ∈ E . The system state vector

is then z = [x y]T . We interpret each component of z as
the population fraction at task i ∈ {1, ...,M ′}, where M ′

is the sum of all real and virtual tasks. The interconnection
topology of these tasks can be modeled as a directed graph
G′ = (V ′, E ′), where V ′ = {1, ...,M ′} and E ′ = {(i, j) ∈
V ′ × V ′ | i ∼ j }. Since G is strongly connected, so is G′.

Each component of z evolves according to the ODE

żi(t) =
∑

j|(j,i)∈E′

k̂jizj(t)−
∑

j|(i,j)∈E′

k̂ijzi(t) , (14)

where each k̂ij is defined by the corresponding coefficient in
model (13). The system of equations for all M ′ tasks can
be written in the same form as the linear model (3) using
an expanded transition rate matrix K̂, and the conservation
constraint (11) can be written as 1T z = 1. Since the system
can be represented in the same form as system (3) subject to
(2), Theorem 1 can now be applied to show that there is a
unique, stable equilibrium.

Remark 1: At equilibrium, the incoming and outgoing flux
at each virtual task along the path from task i to j is kijxi,
and so model (13) contains the system Kx = 0. Thus, xn in
zn, the null space of K̂, is the same as the null space of K
in the corresponding model (3) that ignores transition times.
This shows that the ratio between the equilibrium populations
at any two real tasks is the same in both models. However,
the equilibrium populations x̄n

i ≡ xd
i in model (3) are higher

than those in model (13) because the conservation constraint
for the latter model accounts for robots in transition.

Remark 2: The modeling approach in this section can still
be applied when the distribution of Tij is complicated (e.g.
multimodal) by approximating it as a combination of Erlang
distributions; this is a topic for future work.

III. DESIGN OF OPTIMAL TRANSITION RATE MATRIX K
We consider the task of redeploying a swarm modeled

as system (3) from an initial distribution x0 to a target
distribution xd. As described in Section II-B, we want to
select the rates kij in a way that balances fast convergence to
xd with long-term efficiency to conserve power. To this end,
we compute the matrix K as the solution to an optimization
problem that maximizes a measure of the convergence rate
of system (3) to xd subject to constraint (8) or (9) on
idle transitions at equilibrium. We quantify the degree of
convergence to xd by the fraction of misplaced robots,

µ(x) = ||x− xd||2 . (15)

We say that one system converges faster than another if it
takes less time tf for µ(x) to decrease to some small fraction
f , such as 0.1, of its initial value µ(x0).

We formulate several versions of this optimization problem,
summarized in Table I (ROC = rate of convergence), each of
which is tailored to an application with a particular combina-
tion of properties. The graph G will be fully connected (FC)
in addition to strongly connected if there are no physical or
logical constraints on the flow of robots between pairs of tasks,
such as a path in a disaster area that is only wide enough for
robots to travel in one direction. In addition, it may be possible
to obtain x0, for instance by identifying robots in an image
from an aerial camera.

Problem P3 is solved using a stochastic optimization method
that directly minimizes convergence time. The resulting system
is used as a baseline to compare the systems computed by
the other problems, which manipulate convergence time by
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TABLE I
K OPTIMIZATION PROBLEMS

Problem FC x0 Objective
P1,P1R maximize asymptotic ROC a

P2 ! maximize overall ROC
P3 ! minimize time to reach 0.1µ(x0)

P4 ! ! maximize ROC along xd − x0

aMaximizes all nonzero eigenvalues of K when the Markov process on G
is reversible and constraint (9) is used; see Section III-A.

maximizing functions of the eigenvalues of K using linear or
semidefinite programs. Since these types of programs can be
solved with methods that have polynomial complexity in the
worst case [23], we can efficiently compute the M×M matrix
K for large M . Thus, our allocation approach scales well with
the number of tasks.

Our K design methods can also be applied to the more
realistic model (10) with Erlang-distributed τij when it is
expressed as an equivalent linear model (13), as in [17].

A. Maximizing the asymptotic rate of convergence
If G is strongly but not necessarily fully connected and

x0 is unknown, we can designate the asymptotic rate of
convergence of system (3) to xd as the quantity to maximize.
Let λi(K) signify the eigenvalue of K with the ith smallest
real part of all the eigenvalues. By Theorem 1, λ1(K) = 0
and λi(K) > 0 for i = 2, ...,M . Thus, the asymptotic rate
of convergence is governed by Re(λ2(K)). Noting that K
is usually not symmetric, we first find a symmetric matrix
S such that λ2(S) ≤ Re(λ2(K)). We replace the objective
function Re(λ2(K)) by λ2(S). We can write this problem as
a semidefinite program with a linear matrix inequality that
arises from a variational characterization of λ2(S).

Theorem 3: Define Π = diag(xd), which is invertible
since xd > 0. Let K be a matrix with the structure in (6).
Define the matrices

N = 1
2 (ΠKT + KΠ) , (16)

K̃ = Π−1/2KΠ1/2 ,

S = 1
2 (K̃ + K̃T ) = Π−1/2NΠ−1/2. (17)

Then λ2(S) ≤ Re(λ2(K)).1

Denote the vector of all kij by k ∈ RM2−M , which is the
optimization variable. Both constraints on transitions can be
written in the form f(k) ≤ 1, where f : RM2−M → R is
defined as ftot for constraint (8) and find for constraint (9):

ftot(k) =
∑

(i,j)∈E

kijx
d
i , find(k) = max

(i,j)∈E
{kijx

d
i /cij}. (18)

Now we can state the optimization problem as: maximize
λ2(S) subject to f(k) ≤ 1, k ≥ 0. We use an alternate
formulation [20]: minimize f(k) subject to λ2(S) ≥ 1, k ≥ 0.
The vector q = [(xd

1)1/2 ... (xd
M )1/2]T is the eigenvector of

1Proofs for the theorems in this section can be found in Appendix A.

Π−1/2NΠ−1/2 corresponding to the zero eigenvalue. From
equation (17) and the characterization of eigenvalues in [24],
the constraint λ2(S) ≥ 1 can be expressed as:

λ2(S) = inf
||x||=1
xT q=0

xT Π−1/2NΠ−1/2x ≥ inf
||x||=1
xT q=0

xT (I− qqT )x

(19)
The problem can now be posed as Problem P1, in which

the linear matrix inequality comes from (19).

[P1] minimize f(k)
subject to Π−1/2NΠ−1/2 , I− qqT , k ≥ 0 .

Denote the optimized vector of rates by k∗. If constraint
(8) is used, then we can achieve the maximum total flux by
multiplying k∗ by ctot/ftot(k∗). If constraint (9) is used, we
can achieve the maximum flux for each edge by dividing k∗
by find(k∗).

For a strongly but not necessarily fully connected graph with
bidirectional edges, which means that (i, j) ∈ E if and only if
(j, i) ∈ E , we explore the advantage of having a reversible
Markov process, which is defined by the detailed balance
equations:

kijx
d
i = kjix

d
j ∀(i, j) ∈ E . (20)

Suppose that G has bidirectional edges and the two edges
between each pair of adjacent tasks have equal flux capacities.
For example, robots may travel between sites along identical
parallel roads, similar to a two-way highway. Then by condi-
tion (20), the Markov process on G is reversible. We adapt the
problem of maximizing the asymptotic rate of convergence to
this special case and call it Problem P1R.

For constraint (8): Condition (20) implies that KΠ = ΠKT ,
so N = KΠ in equation (16). Substitute KΠ for N in
Problem P1 (with f = ftot). Since K = NΠ−1, K is similar
to S, so the constraint λ2(S) ≥ 1 becomes λ2(K) ≥ 1. Thus,
the problem constrains Re(λ2(K)) directly instead of a lower
bound on this value.
For constraint (9): We can maximize all the nonzero eigen-
values of K by setting each transition rate to its maximum
value subject to condition (20) and constraint (9):

kij = (1/xd
i ) min(cij , cji) , (i, j) ∈ E .

This is evident by using the Courant-Fischer min-max theorem
[24] to express each nonzero eigenvalue of S, and therefore
of K, in terms of a quadratic form x∗Sx (x∗ is the conjugate
transpose of x), which is equal to

∑

(i,j)∈E

kijx
d
i aij āij , aij = xi(xd

i )
−1/2 − xj(xd

j )
−1/2 ,

where āij is the complex conjugate of aij .

B. Maximizing the overall convergence rate
The asymptotic rate of convergence only dictates the long-

term system behavior. If G is fully connected and x0 is
unknown, we can speed convergence of the faster modes
by maximizing a measure of the overall convergence rate,
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which is a function of all the nonzero eigenvalues of K,
Λ(K) = [λ2(K) ... λM (K)]. We define the quantity to be
maximized as 1T Λ, which weights each eigenvalue equally.
We use equations (4) and (7) to write k as a linear function of
v ≡ [Λ(K) 0]T ∈ RM2−M . This allows us to formulate the
optimization problem as a linear program with optimization
variable v and objective function 1T v.

Let K be a matrix that satisfies equation (4), which sets M
constraints on the M2 entries of K, and equation (7), which
sets M−1 constraints. We now define the remaining (M−1)2
constraints on K in terms of the variable Λ(K). Since no extra
constraints can be applied, no kij may be set to zero, which
is why G must be fully connected.

Construct an orthonormal basis set in RM , D =
{d1,d2, ...,dM−1,xd/||xd||}. Define a matrix in RM×M ,

A = [ d1 ... dM−1 1 ]T ≡ [ ÃT | 1 ] . (21)

Since 1T xd = 1 by equation (2), 1 has a nonzero compo-
nent in the direction of xd, so the rows of A are linearly
independent. Thus, A is invertible. Let B = A−1. Then

B =
[

ÃT | xd
] [

I 0
−1T ÃT 1

]
≡

[
B̃ | xd

]
.

Define C ∈ R(M−1)×(M−1) as follows for some fixed Ã:

C = ÃKB̃ . (22)

Also define Ĉ ∈ RM×M as C augmented with an added row
of zeros and an added column of zeros.

Theorem 4: A matrix K can be expressed as K = BĈA
if and only if it satisfies equations (4) and (7).

From this result, K is similar to Ĉ, and so the eigenvalues
of C are Λ(K). Thus, we can define C as:

C ≡ diag(Λ(K)) . (23)

Now reformulate equation (7) as Fk = 0, where F ∈
RM×(M2−M), and equation (22) with C determined by (23)
as Gk = g, where G ∈ R(M−1)2×(M2−M) and g =
[Λ(K) 0]T ∈ R(M−1)2 . Define F̃ as any M − 1 rows of
F. Then k can be written as

k = [G F̃]−T [gT 0]T ≡ H−1v . (24)

Using definition (24) for k, constraints (8) and (9) are

rT H−1v ≤ ctot , H−1v ≤ c , (25)

where the entries of r ∈ RM2−M are xd
i and the entries of

c ∈ RM2−M are cij/xd
i . In addition, property (5) is

H−1v ≥ 0 . (26)

Note that while this property is not needed to prove Theorem 4,
it is required to produce a valid K. The optimization problem
can now be posed as Problem P2.

[P2] Maximize 1T v subject to vi = 0 for i = M, ..., M2 −
M , equation (26), and one of the constraints in (25).

C. Maximizing the convergence rate for a specified x0

If G is strongly but not necessarily fully connected and x0 is
known, we can use a stochastic optimization method to directly
minimize the time to converge from x0, quantified by tf . We
implement Problem 3 below using Metropolis optimization
[25] with k as the variable. We chose this method for its
simplicity and the fact that it yields reasonable improvements
in tf with moderate computing resources.

[P3] Minimize tf subject to equations (4), (5), (7), and
constraint (8) or (9).

Implementation: At each iteration, k is perturbed by a random
vector such that the resulting K matrix satisfies (4), (5), and
(7). k is then scaled as in Problem P1 to satisfy constraint
(8) or (9) while maximizing flux capacity. The resulting K is
decomposed into its normalized eigenvectors and eigenvalues,
system (3) is mapped into the space spanned by the normalized
eigenvectors, and the appropriate transformation is applied to
compute x(t) using exp(t diag([Λ(K) 0])). Since the system
is stable by Theorem 1, µ(x) always decreases monotonically
with time, so a Newton scheme can be used to calculate tf .

If G is fully connected and x0 is known, then K can be
computed such that ∆ ≡ xd − x0 is one of its eigenvectors
with eigenvalue λ > 0. By maximizing λ, we maximize
the convergence rate along the vector from x0 to xd, the
most direct route in RM to the target distribution. We use
the decomposition of K from Theorem 4 to formulate the
optimization problem as a linear program that maximizes λ.

Theorem 5: Let K be a matrix that satisfies equations (4)
and (7); then by Theorem 4, K = BĈA. Let d1 = d in
definition (21), where

d = ∆′/||∆′||, ∆′ = ∆−
(
xdT

∆/||xd||2
)
xd . (27)

Then K∆ = λ∆ if and only if C from (22) is defined as

C = [ c | C̃ ], cT = [λ 0] , (28)

where λ and C̃ are unconstrained.

We can now pose the optimization problem as Problem P4,
in which property (5) and constraints (8) and (9) are defined
in terms of the entries of BĈA, with d1 = d and C defined
by (28). The optimization variables are λ and C̃.

[P4] Maximize λ subject to equation (5) and constraint (8)
or (9).

IV. RESULTS

A. Effect of connectivity of G on asymptotic convergence rate
As a preliminary study, we investigated the effect of the

connectivity of G on λ2(K) for several strongly connected,
directed graphs on three tasks, labeled in Fig. 2. We used
Problem P1R to compute K for graph α with reversibility
condition (20) and Problem P1 to compute K for graph α
without this condition and for all other graphs. We modeled
each edge in a graph as providing one unit of equilibrium flux
capacity by defining cij = 1 for all (i, j) ∈ E in constraint (9)
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!         "       # $ 

Fig. 2. Graphs on three tasks

TABLE II
COMPARISON OF λ2(K) FOR GRAPHS ON THREE TASKS

Graph Rev. λ2(K), constraint (8) λ2(K), constraint (9)
α yes 9.6774 7.7299
α no 9.6774 ± 0.0026i 7.7299
β no 8.0645 ± 2.7936i 4.9588 ± 1.6378i

γ no 6.5729 ± 2.9691i 4.6667 ± 2.2111i

δ no 5.1667 ± 2.5766i 5.1667 ± 2.5766i

and ctot = NE in constraint (8). The target distribution was
xd

1 = 0.2, xd
2 = 0.3, xd

3 = 0.5.
Table II gives the resulting λ2(K) of each graph for both

constraints, with column 2 indicating whether condition (20)
was imposed. The fully connected graph α yields the fastest
convergence, which is expected since robots can switch from
any task directly to any other task. Each removal of an
edge from graph α lowers λ2(K), except in the case of
constraint (9) applied to the 3-edge cycle δ. This is because
the optimization problem maximized the flux capacity for each
edge of graph δ (and did not for β and γ), which offset the
stricter limits on task switching than in the other graphs.

B. Comparison of K for surveillance simulation

To demonstrate our approach on a realistic application, we
simulated a scenario in which each task is the surveillance
of one of four buildings on the University of Pennsylvania
campus. Robots execute the tasks by monitoring the build-
ing perimeters, and they effect task transitions by traveling
between buildings. We assume that robots can localize them-
selves on the campus and sense neighboring robots to avoid
collisions. Appendix B describes our simulation methodology
in detail, including the motion controllers for perimeter track-
ing and navigation that are used to implement surveillance
behavior and inter-site travel, respectively. Fig. 3 illustrates
the integration of switching initiations, perimeter surveillance,
and navigation in the simulation.

The buildings to be monitored are highlighted in light
dashed lines in Fig. 4, which also shows the cell decomposition
used for navigation (see Appendix B). Two different graphs
G, shown in Fig. 5, were defined on these buildings. The
swarm consists of 250 homogeneous robots and is initially
split equally between buildings 3 and 4. The robots must
redistribute to achieve the target population fractions xd

1 = 0.1,
xd

2 = 0.4, xd
3 = 0.2, xd

4 = 0.3.
We compared the system convergence to xd for different

sets of transition rates k, each computed from one of the
optimization problems discussed in Section III. Problems P1
and P3 were used to compute rates for the system with graph
Fig. 5a, and Problems P1R, P2, P3, and P4 were used for the

Site  i Site  j 

Survey perimeter in 

this direction 

Navigate 

from i to j 

[29] 

Avoid inter-robot collisions [30] 

  Start i ! j 

transition [28] 

Robot 

  Start j ! i 

transition [28] 

Fig. 3. Robot activities in the simulation. Numbers in brackets are related
references for the stochastic simulation algorithm and motion controllers (see
Appendix B).

system with graph Fig. 5b. The snapshots in Fig. 6 illustrate
the robot redistribution for one trial.

The following discussion summarizes several key points
from the simulation results.

a) Agreement between continuous and stochastic models:
Our top-down methodology relies on the principle that the
rates kij designed for the continuous model (3) will produce
similar system performance when used as stochastic transition
probabilities by individual robots. In Fig. 7, we compare
performance in terms of ||x−xd||1 for 40 stochastic simulation
runs and the continuous DDE model (10) with the same k.
Each time delay τij in the DDE model was estimated as the
average of 750−850 robot travel times at equilibrium from site
i to j, collected from a stochastic simulation using site graph
Fig. 5b. The stochastic runs average to a plot that is close
to the DDE plot and display little variability; if the number
of robots were to approach infinity, the standard deviations
would decrease to zero. The similarity in performance of the
continuous and stochastic models verifies the validity of our
top-down methodology.

b) Tradeoff between convergence rate and equilibrium
traffic: Fig. 8 and 9 compare system performance for different
k in terms of the distance from equilibrium,

ν(x,y) = ||x− xd||1 − 1T y . (29)

This quantity decreases to zero at equilibrium because then the
fraction of travelers, 1T y, accounts entirely for all the discrep-
ancies |xi−xd

i |, i = 1, ...,M . Each plot is an average over 40
stochastic simulation runs, and the bold numbers beside the
legends are the average traveler fractions at equilibrium for
each k. (Standard deviations are not shown to avoid cluttering
the figures; the maximum standard deviation over all plots is
0.078.) The data in these figures verify that there is a tradeoff
between rapid convergence to equilibrium and the number of
idle transitions between sites at equilibrium. For instance, the
runs in Fig. 8b are the slowest to converge, and they yield
the lowest equilibrium traffic fractions. It is notable that this
tradeoff can occur to different degrees depending on the flux
constraint, (8) or (9). The P2 plot converges slightly faster in
Fig. 9b than in Fig. 9a, but it has a lower equilibrium traffic
fraction.

c) Faster convergence with increased site connectivity:
Fig. 8 and 9 show that for both flux constraints, the runs
for graph Fig. 5b converge faster to equilibrium than those
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Fig. 4. Cell decomposition of the free space used for navigation.

for graph Fig. 5a. This is due to the difference in allowable
pathways between the initial and final distributions. In Fig. 5b,
robots can travel directly from sites 3 and 4 to sites 1 and 2,
while in Fig 5a, they can only reach sites 1 and 2 via the path
3 → 4 → 1 → 2, which prolongs the redistribution process.
The greater number of edges in Fig. 5b also reduces the impact
on convergence of limiting each edge’s flux capacity. The
range of convergence times to equilibrium for Fig. 5b are
similar for both constraints, while the convergence times for
Fig. 5a increase significantly when constraint (9) is applied.

d) Limits on edge flux capacities eliminate the advantage
of knowing x0: Since the k produced by Problems P3 and P4
are optimized for a specific x0, it seems likely that for any
given x0 the P3 and P4 runs will converge at least as fast as the
runs corresponding to other problems, which optimize k for
the entire domain of x0. As Fig. 8a and 9a show, this is true if
constraint (8) is used. This is because the flux capacity can be
distributed among edges in any way as long as total capacity
does not exceed a limit. However, when constraint (9) is used,
limits are placed on edges that, if left unconstrained, would
be allocated a higher flux capacity to redistribute robots from
x0 to xd. The problems that are independent of x0 are more
robust to these limitations; their corresponding runs converge
as fast as the runs that rely on x0 or outperform them.

e) K from convex optimization is competitive compared
to K from stochastic optimization: The fastest-converging
runs that use k from Problems P1, P1R, P2, and P4 attain
equilibrium at least as quickly as the corresponding runs that
use k from Problem P3. Hence, we can use efficient convex
optimization techniques to compute a k that yields the same
system performance as a k from a much more time-consuming
stochastic optimization approach.2 This facilitates the quick
computation of k in real-time task allocation scenarios.

V. CONCLUSIONS

We have presented an approach to redistributing a swarm
of robots among multiple tasks that can be optimized for fast
convergence to a target distribution subject to a constraint(s)
on idle transitions at equilibrium. Our methodology is based

2On a standard 2 GHz laptop, one Metropolis optimization run used for
graph Fig. 5b took about 15 minutes for t0.1 to decrease slowly enough with
each iteration for K to be deemed close enough to optimal, while all the
convex optimization programs computed an optimal K in less than a second.

Fig. 5. Numbering and connectivity of surveyed buildings for (a) a strongly
connected but not fully connected graph; (b) a fully connected graph.

Fig. 6. Snapshots of a run using k from Problem P1 with constraint (9).
The red robots (") are not engaged in a transition; the orange robots (∗) have
committed to travel to another site or are in the process of traveling.

on modeling the swarm as a set of continuous linear ODE’s
and optimizing the transition rates in this model. We can
account for realistic distributions of transition times within the
framework of the linear ODE abstraction by augmenting the
network of tasks with virtual tasks that represent the progress
of transitioning robots. The optimized rates comprise a list
of NE transition probabilities per unit time for individual
robots to switch between tasks, and they are independent of
the swarm size. The collective behavior that arises from indi-
vidual robots switching stochastically between tasks follows
the continuous model prediction. In this way, we synthesize
decentralized robot controllers that can be computed a priori,
do not require inter-robot communication, and have provable
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Fig. 7. DDE and stochastic simulations using k from Problem P1 with
constraint (9). Stochastic plots show the average over 40 runs ± standard
deviation.
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Fig. 9. The same quantities as in Fig. 8 for runs using graph Fig. 5b.

guarantees on performance. A possible extension of this work
is the design of a time-dependent transition rate matrix K(t)
that causes the swarm to redistribute according to a trajectory
of desired configurations, xd(t). Other extensions include the
introduction of communication between robots and the use of
nonlinear models to represent robot interactions.

APPENDIX A
PROOFS FOR SECTION III

A. Proof of Theorem 3
Define a convex, symmetric function h : RM → R,

h(x) = −min{xi + xj} , i, j ∈ {1, ...,M} . (30)

Let λ(A) be the vector of the eigenvalues of a matrix A.
By Theorem 16.4 of [26], since h is convex and symmetric,

h(Re(λ(K))) is the infimum of h( 1
2λ(M + MT )) over all

matrices M similar to K. Thus, since K̃ is similar to K,

h(Re(λ(K))) ≤ h(1
2λ(K̃ + K̃T )) = h(λ(S)) , (31)

where the equality on the right comes from equation (17).
Now we evaluate both sides of inequality (31). By Theorem

1, h(Re(λ(K))) = −Re(λ2(K)). We observe that λ(S) =
Re(λ(S)) because S is symmetric. We now show that S is
positive semidefinite, denoted by S , 0, which implies that
h(λ(S)) = −λ2(S) and hence reduces (31) to the inequality
λ2(S) ≤ Re(λ2(K)). By equation (17), S , 0 if N , 0. Since
G is strongly connected, λ2(N) > 0 (Lemma 10 of [27]).
Using property (4) and constraint (7), N1 = 1

2 (ΠKT 1 +
Kxd) = 0, and so λ1(N) = 0 with corresponding eigenvector
1. Therefore, N , 0.

B. Proof of Theorem 4
K is similar to P ≡ MKN, where M,P ∈ RM×M and

N = M−1. Subdivide M as [M̃T | m]T and N as [Ñ | n],
where m,n ∈ RM×1. Then

MN =
[

M̃Ñ M̃n
mT Ñ mT n

]
= I , (32)

MKN =
[

M̃KÑ M̃Kn
mT KÑ mT Kn

]
= P . (33)

Choose an N with n = xd. It follows from equation (32) that
mT xd = 1, which by equation (2) implies that m = 1.

Suppose that K satisfies equations (4) and (7). Since m = 1
and n = xd, these constraints applied to equation (33) make
the last row and last column of P both 0. To satisfy M̃n =
M̃xd = 0 in equation (32), M̃ can be set to Ã. Then M = A,
N = B, and P = Ĉ, so it follows that K = BĈA.

Now suppose that K = BĈA. Since ĈAxd = 0 and
1T BĈ = 0, K satisfies equations (4) and (7).

C. Proof of Theorem 5
Suppose that K∆ = λ∆. Then

K∆ = BĈA∆ = λ∆ ⇒ ĈA∆ = λA∆ . (34)

Using equation (27) for d1 and the orthonormality of the di:

dT
i ∆ = ||∆′||dT

i d1 +
(
xdT

∆/||xd||2
)
dT

i xd = 0 (35)

for i = 2, ...,M − 1. From this equation and the fact that
1T ∆ = 0 by constraint (2), A∆ = [ dT

1 ∆ | 0 ]T . Thus,
equation (34) is true if and only if C is defined as in (28).

APPENDIX B
SIMULATION METHODOLOGY

The continuous DDE model (10) was numerically integrated
using the Runge-Kutta method. Gillespie’s Direct Method [28]
was used to perform a stochastic simulation of the system
that is represented deterministically by the DDE model. This
method simulates a sequence of robot transition events and
their initiation times using the transition rates kij . Each event
is identified with the commitment of a robot to travel to
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another site. A transition from building i to building j is
assigned to a random robot on the perimeter of i. This robot
continues to track the perimeter until it reaches the exit for
edge (i, j), at which point it begins navigating to the entrance
on j. For more details, see [13] and [16].

To simulate perimeter tracking and navigation, we repre-
sented each robot k as a planar agent governed by a kinematic
model q̇k = uk, where qk ∈ R2 denotes the robot’s (x, y)
coordinates and uk ∈ R2 is a control input.

Suppose that the boundary of a building m is parameterized
by a vector s(s) ∈ R2 that maps arc length s to (x, y)
coordinates. A robot k monitoring the perimeter of m moves
in the direction of a unit vector tangent to this boundary,
n̂m(s) ∈ R2. To create an approximately uniform distribution
of robots around the perimeter, we specify that the robot k
slows down by a fraction ζ of its nominal speed vp if its
distance qkl from the robot l in front of it is less than pm/nm,
where pm is the perimeter length and nm is the site population.
The robot kinematics are then defined as

q̇k = (1− σ(qkl, pm, nm)ζ) vp n̂m(qk) ,

where σ(qkl, pm, nm) = 1 if qkl < pm/nm and 0 otherwise.
To implement inter-site navigation, we first decomposed the

free space into a tessellation of convex cells. Each edge (i, j)
was defined as a sequence of cells to be traversed by robots
moving from an exit point on the perimeter of building i
to an entry point on the perimeter of j. Dijkstra’s algorithm
was used a priori to compute the sequence with the shortest
cumulative distance between cell centroids, starting from the
cell adjacent to the exit at i and ending at the cell adjacent
to the entrance at j. The robots are provided with the cell
sequence corresponding to each edge.

Define Nk as the set of robots within the sensing radius ρ
of robot k. The robot kinematics for navigation are

q̇k = vn (ng(qk) + na(qk,Nk))/||ng(qk) + na(qk,Nk)|| ,

where vector ng(qk) is computed from local potential func-
tions to ensure arrival at the goal cell [29] and vector
na(qk,Nk) is computed from repulsive potential functions to
achieve inter-robot collision avoidance.

Suppose that qk is in cell c. Let n̂c
e be the unit vector

pointing out of c orthogonal to its exit facet. Let n̂c
f1

, n̂c
f2

be
unit vectors pointing into c orthogonal to each facet adjacent
to the exit facet, and define dk1, dk2 as the distance from robot
k to each of these facets. Also define η, υ, κ > 0. Then

ng(qk) = η n̂c
e + υ (1/dκ

k1 n̂c
f1

+ 1/dκ
k2 n̂c

f2
) .

In the last cell in the sequence, this vector is replaced with
one pointing from qk to the perimeter entrance point.

Let qkl = ||qkl|| = ||qk − ql|| and ξ > 0. Define a sum of
vectors that point away from each neighboring robot,

nn(qk,Nk) =
∑

l∈Nk

− 1
ξ2q2

kl

(
2 ln (ξqkl)−

1
ξqkl

)
qkl .

This is derived from the example potential function given in
[30], with the added parameter ξ that, when lowered, increases
the range of repulsion between robots. Finally,

na(qk,Nk) = nn(qk,Nk)||ng(qk)||/||nn(qk,Nk)|| .

We set the sensing radius ρ to 46 m, which is within the
capabilities of some laser rangefinders. The navigation speed
vn was set to 1.3 m/s, which is attainable by some mobile
robots that are particularly suited to surveillance tasks, such as
PatrolBot R© and Seekur R©. The perimeter surveillance speed
vp was set to be 4.5 times slower.

In the optimization problems, the total equilibrium flux
capacity ctot for all possible edges (graph Fig. 5b) was set to
0.175 robots/s and distributed among the edges in proportion
to the cumulative distance between the centroids of their
associated cells.
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